Page 39 - BH-1-2
P. 39
Brain & Heart Autonomic nerve and heart failure
38. Premchand RK, Sharma K, Mittal S, et al., 2016, Extended and technical complications of vagus nerve stimulator
follow-up of patients with heart failure receiving autonomic implantation. Neurosurgery, 67: 489–494.
regulation therapy in the ANTHEM-HF study. J Card Fail, https://doi.org/10.1227/NEU.0b013e3181f88867
22: 639–642.
49. Wang Z, Yu L, Chen M, et al., 2014, Transcutaneous
https://doi.org/10.1016/j.cardfail.2015.11.002
electrical stimulation of auricular branch of vagus nerve:
39. Zannad F, De Ferrari GM, Tuinenburg AE, et al., 2015, A noninvasive therapeutic approach for post-ischemic heart
Chronic vagal stimulation for the treatment of low ejection failure. Int J Cardiol, 177: 676–677.
fraction heart failure: Results of the NEural Cardiac TherApy https://doi.org/10.1016/j.ijcard.2014.09.165
foR Heart Failure (NECTAR-HF) randomized controlled
trial. Eur Heart J, 36: 425–433. 50. Clancy JA, Mary DA, Witte KK, et al., 2014, Non-invasive
vagus nerve stimulation in healthy humans reduces
https://doi.org/10.1093/eurheartj/ehu345
sympathetic nerve activity. Brain Stimul, 7: 871–877.
40. Gold MR, Van Veldhuisen DJ, Hauptman PJ, et al., 2016, https://doi.org/10.1016/j.brs.2014.07.031
Vagus nerve stimulation for the treatment of heart failure:
The INOVATE-HF trial. J Am Coll Cardiol, 68: 149–158. 51. Murray AR, Atkinson L, Mahadi MK, et al., 2016, The strange
case of the ear and the heart: The auricular vagus nerve and
https://doi.org/10.1016/j.jacc.2016.03.525
its influence on cardiac control. Auton Neurosci, 199: 48–53.
41. Beaumont E, Southerland EM, Hardwick JC, et al., 2015, https://doi.org/10.1016/j.autneu.2016.06.004
Vagus nerve stimulation mitigates intrinsic cardiac neuronal
and adverse myocyte remodeling postmyocardial infarction. 52. Chen M, Yu L, Liu Q, et al., 2015, Low level tragus nerve
Am J Physiol Heart Circ Physiol, 309: H1198–H1206. stimulation is a non-invasive approach for anti-atrial
fibrillation via preventing the loss of connexins. Int J Cardiol,
https://doi.org/10.1152/ajpheart.00393.2015
179: 144–145.
42. Salavatian S, Beaumont E, Gibbons D, et al., 2017, Thoracic https://doi.org/10.1016/j.ijcard.2014.10.114
spinal cord and cervical vagosympathetic neuromodulation
obtund nodose sensory transduction of myocardial 53. Stavrakis S, Humphrey MB, Scherlag BJ, et al., 2015, Low-
ischemia. Auton Neurosci, 208: 57–65. level transcutaneous electrical vagus nerve stimulation
suppresses atrial fibrillation. J Am Coll Cardiol, 65: 867–875.
https://doi.org/10.1016/j.autneu.2017.08.005
https://doi.org/10.1016/j.jacc.2014.12.026
43. Premchand RK, Sharma K, Mittal S, et al., 2014, Autonomic
regulation therapy via left or right cervical Vagus nerve 54. Wang Z, Yu L, Wang S, et al., 2014, Chronic intermittent
stimulation in patients with chronic heart failure: Results of low-level transcutaneous electrical stimulation of auricular
the ANTHEM-HF trial. J Card Fail, 20: 808–816. branch of vagus nerve improves left ventricular remodeling
in conscious dogs with healed myocardial infarction. Circ
https://doi.org/10.1016/j.cardfail.2014.08.009
Heart Fail, 7: 1014–1021.
44. Libbus I, Nearing BD, Amurthur B, et al., 2016, Autonomic https://doi.org/10.1161/CIRCHEARTFAILURE.114.001564
regulation therapy suppresses quantitative T-wave alternans
and improves baroreflex sensitivity in patients with heart 55. Yu L, Huang B, Po SS, et al., 2017, Low-level tragus
failure enrolled in the ANTHEM-HF study. Heart Rhythm, stimulation for the treatment of ischemia and reperfusion
13: 721–728. injury in patients with ST-Segment elevation myocardial
infarction: A proof-of-concept study. JACC Cardiovasc
https://doi.org/10.1016/j.hrthm.2015.11.030
Interv, 10: 1511–1520.
45. Mann DL, Deswal A, 2003, Angiotensin-receptor blockade https://doi.org/10.1016/j.jcin.2017.04.036
in acute myocardial infarction--a matter of dose. N Engl J
Med, 349: 1963–1965. 56. Montgomery KL, Iyer SM, Christensen AJ, et al., 2016,
Beyond the brain: Optogenetic control in the spinal cord
https://doi.org/10.1056/NEJMe038163
and peripheral nervous system. Sci Transl Med, 8: 337rv5.
46. Castoro MA, Yoo PB, Hincapie JG, et al., 2011, Excitation https://doi.org/10.1126/scitranslmed.aad7577
properties of the right cervical vagus nerve in adult dogs.
Exp Neurol, 227: 62–68. 57. Maimon BE, Sparks K, Srinivasan S, et al., 2018, Spectrally
distinct channelrhodopsins for two-colour optogenetic
https://doi.org/10.1016/j.expneurol.2010.09.011
peripheral nerve stimulation. Nat Biomed Eng, 2: 485–496.
47. Byku M, Mann DL, 2016, Neuromodulation of the failing https://doi.org/10.1038/s41551-018-0255-5
heart: Lost in translation? JACC Basic Transl Sci, 1: 95–106.
58. Towne C, Montgomery KL, Iyer SM, et al., 2013, Optogenetic
https://doi.org/10.1016/j.jacbts.2016.03.004
control of targeted peripheral axons in freely moving
48. Spuck S, Tronnier V, Orosz I, et al., 2010, Operative animals. PLoS One, 8: e72691.
Volume 1 Issue 2 (2023) 10 https://doi.org/10.36922/bh.0913

