Page 150 - EJMO-9-1
P. 150
Eurasian Journal of Medicine and
Oncology
Machine learning insights into heart failure outcomes
data science projects. All data provided on the Kaggle 9. Chicco D, Jurman G. Machine learning can predict survival
platform are anonymized, and no identifying information of patients with heart failure from serum creatinine and
about the patients is disclosed. As such, no consent was ejection fraction alone. BMC Med Inform Decis Mak.
required to publish the data, as the dataset complies 2020;20(1):16.
with ethical standards for anonymization. Furthermore, doi: 10.1186/s12911-020-1023-5
no identifiable images or personal details of individuals 10. McMurray JJ, Adamopoulos S, Anker SD, et al. ESC
were used in this study. Therefore, the requirements for Guidelines for the diagnosis and treatment of acute and
consent and masking of identifying information are not chronic heart failure 2012: The Task Force for the Diagnosis
applicable. and Treatment of Acute and Chronic Heart Failure 2012
of the European Society of Cardiology. Developed in
Availability of data collaboration with the Heart Failure Association (HFA) of
The code for the algorithms used in this study is available the ESC. Eur Heart J. 2012;33(14):1787-1847.
on request through email from the corresponding author. doi: 10.1093/eurheartj/ehs104
References 11. Filippos T, Andrew X, Javed B. Cardiovascular aging and
heart failure: JACC review topic of the week. J Am Coll
1. Tromp J, Paniagua SM, Lau ES, et al. Age dependent Cardiol. 2019;74(6):804-813.
associations of risk factors with heart failure: Pooled doi: 10.1016/j.jacc.2019.06.053
population based cohort study. BMJ. 2021;372:n461.
12. Shah SJ, Katz DH, Selvaraj S, et al. Phenomapping for
doi: 10.1136/bmj.n461
novel classification of heart failure with preserved ejection
2. Veenis JF, Brunner-La Rocca HP, Linssen GC, et al. Age fraction. Circulation. 2015;131(3):269-279.
differences in contemporary treatment of patients with doi: 10.1161/CIRCULATIONAHA.114.010637
chronic heart failure and reduced ejection fraction. Eur J
Prev Cardiol. 2019;26(13):1399-1407. 13. Fonarow GC, Adams KF Jr., Abraham WT, et al.
Risk stratification for in-hospital mortality in acutely
doi: 10.1177/2047487319835042 decompensated heart failure: Classification and regression
3. Mortazavi BJ, Downing NS, Bucholz EM, et al. Analysis of tree analysis. JAMA. 2005;293(5):572-580.
machine learning techniques for heart failure readmissions. doi: 10.1001/jama.293.5.572
Circ Cardiovasc Qual Outcomes. 2016;9(6):629-640.
14. Damman K, Valente MAE, Voors AA, O’Connor CM, van
doi: 10.1161/CIRCOUTCOMES.116.003039
Veldhuisen DJ, Hillege HL. Renal impairment, worsening
4. Olsen CR, Mentz RJ, Anstrom KJ, Page D, Patel PA. renal function, and outcome in patients with heart failure:
Clinical applications of machine learning in the diagnosis, An updated meta-analysis. Eur Heart J. 2014;35(7):
classification, and prediction of heart failure. Am Heart J. 455-469.
2020;229:1-17.
doi: 10.1093/eurheartj/eht386
doi: 10.1016/j.ahj.2020.07.009
15. Angraal S, Mortazavi BJ, Gupta A, et al. Machine learning
5. Katarya R, Srinivas P. Predicting Heart Disease at Early Stages prediction of mortality and hospitalization in heart
using Machine Learning: A Survey. In: 2020 International failure with preserved ejection fraction. JACC Hear Fail.
Conference on Electronics and Sustainable Communication 2020;8(1):12-21.
Systems (ICESC). IEEE; 2020. p. 302-305.
doi: 10.1016/j.jchf.2019.06.013
doi: 10.1109/ICESC48915.2020.9155586
16. Nithya B, Ilango V. Predictive Analytics in Health Care
6. Saqib M, Perswani P, Muneem A, et al. Machine learning in Using Machine Learning Tools and Techniques. In: 2017
heart failure diagnosis, prediction, and prognosis: Review. International Conference on Intelligent Computing and
Ann Med Surg (Lond). 2024;86(6):3615-3623. Control Systems (ICICCS). IEEE; 2017. p. 492-499.
doi: 10.1097/MS9.0000000000002138 doi: 10.1109/ICCONS.2017.8250771
7. Prudvi PS, Sharifahmadian E. Applying machine learning 17. Obermeyer Z, Emanuel EJ. Predicting the future-big data,
techniques to find important attributes for heart failure machine learning, and clinical medicine. N Engl J Med.
severity assessment. Int J Comput Sci Eng Appl. 2017;7(5):1-9. 2024;375(13):1216-1219.
doi: 10.5121/ijcsea.2017.7501 doi: 10.1056/NEJMp1606181
8. Available from: https://www.kaggle.com/datasets/ 18. Choi E, Schuetz A, Stewart WF, Sun J. Using recurrent
whenamancodes/heart-failure-clinical-records/data. [Last neural network models for early detection of heart failure
accessed on 2024 May 30]. onset. J Am Med Inform Assoc. 2017;24(2):361-370.
Volume 9 Issue 1 (2025) 142 doi: 10.36922/ejmo.6583

