Page 150 - EJMO-9-1
P. 150

Eurasian Journal of Medicine and
            Oncology
                                                                        Machine learning insights into heart failure outcomes


            data  science  projects. All data  provided  on  the Kaggle   9.   Chicco D, Jurman G. Machine learning can predict survival
            platform are anonymized, and no identifying information   of  patients  with  heart failure from serum creatinine  and
            about the patients is disclosed. As such, no consent was   ejection fraction alone.  BMC  Med Inform  Decis  Mak.
            required to publish the data, as the dataset complies   2020;20(1):16.
            with ethical standards for anonymization. Furthermore,      doi: 10.1186/s12911-020-1023-5
            no identifiable images or personal details of individuals   10.  McMurray JJ, Adamopoulos S, Anker SD,  et al. ESC
            were used in this study. Therefore, the requirements for   Guidelines for the diagnosis and treatment of acute and
            consent and masking of identifying information are not   chronic heart failure 2012: The Task Force for the Diagnosis
            applicable.                                           and Treatment of Acute and Chronic Heart Failure 2012
                                                                  of the European Society of Cardiology. Developed in
            Availability of data                                  collaboration with the Heart Failure Association (HFA) of
            The code for the algorithms used in this study is available   the ESC. Eur Heart J. 2012;33(14):1787-1847.
            on request through email from the corresponding author.     doi: 10.1093/eurheartj/ehs104
            References                                         11.  Filippos T, Andrew X, Javed B. Cardiovascular aging and
                                                                  heart  failure:  JACC  review  topic  of  the  week.  J  Am Coll
            1.   Tromp J, Paniagua SM, Lau ES,  et al. Age dependent   Cardiol. 2019;74(6):804-813.
               associations of risk factors with heart failure: Pooled      doi: 10.1016/j.jacc.2019.06.053
               population based cohort study. BMJ. 2021;372:n461.
                                                               12.  Shah SJ, Katz DH, Selvaraj S,  et al. Phenomapping for
               doi: 10.1136/bmj.n461
                                                                  novel classification of heart failure with preserved ejection
            2.   Veenis JF, Brunner-La Rocca HP, Linssen GC,  et  al. Age   fraction. Circulation. 2015;131(3):269-279.
               differences in contemporary treatment of patients with      doi: 10.1161/CIRCULATIONAHA.114.010637
               chronic heart failure and reduced ejection fraction.  Eur J
               Prev Cardiol. 2019;26(13):1399-1407.            13.  Fonarow GC, Adams KF Jr., Abraham WT,  et al.
                                                                  Risk stratification for in-hospital mortality in acutely
               doi: 10.1177/2047487319835042                      decompensated heart failure: Classification and regression
            3.   Mortazavi BJ, Downing NS, Bucholz EM, et al. Analysis of   tree analysis. JAMA. 2005;293(5):572-580.
               machine learning techniques for heart failure readmissions.      doi: 10.1001/jama.293.5.572
               Circ Cardiovasc Qual Outcomes. 2016;9(6):629-640.
                                                               14.  Damman K, Valente MAE, Voors AA, O’Connor CM, van
               doi: 10.1161/CIRCOUTCOMES.116.003039
                                                                  Veldhuisen DJ, Hillege HL. Renal impairment, worsening
            4.   Olsen  CR,  Mentz  RJ,  Anstrom  KJ,  Page  D,  Patel  PA.   renal function, and outcome in patients with heart failure:
               Clinical applications of machine learning in the diagnosis,   An updated meta-analysis.  Eur  Heart  J. 2014;35(7):
               classification, and prediction of heart failure. Am Heart J.   455-469.
               2020;229:1-17.
                                                                  doi: 10.1093/eurheartj/eht386
               doi: 10.1016/j.ahj.2020.07.009
                                                               15.  Angraal S, Mortazavi BJ, Gupta A, et al. Machine learning
            5.   Katarya R, Srinivas P. Predicting Heart Disease at Early Stages   prediction of mortality and hospitalization in heart
               using Machine Learning: A Survey. In: 2020 International   failure  with preserved  ejection  fraction.  JACC Hear Fail.
               Conference on Electronics and Sustainable Communication   2020;8(1):12-21.
               Systems (ICESC). IEEE; 2020. p. 302-305.
                                                                  doi: 10.1016/j.jchf.2019.06.013
               doi: 10.1109/ICESC48915.2020.9155586
                                                               16.  Nithya B, Ilango V. Predictive Analytics in Health Care
            6.   Saqib M, Perswani P, Muneem A, et al. Machine learning in   Using Machine Learning Tools and Techniques. In:  2017
               heart failure diagnosis, prediction, and prognosis: Review.   International Conference on Intelligent Computing and
               Ann Med Surg (Lond). 2024;86(6):3615-3623.         Control Systems (ICICCS). IEEE; 2017. p. 492-499.
               doi: 10.1097/MS9.0000000000002138                  doi: 10.1109/ICCONS.2017.8250771
            7.   Prudvi PS, Sharifahmadian E. Applying machine learning   17.  Obermeyer Z, Emanuel EJ. Predicting the future-big data,
               techniques to find important attributes for heart failure   machine learning, and clinical medicine.  N  Engl J Med.
               severity assessment. Int J Comput Sci Eng Appl. 2017;7(5):1-9.  2024;375(13):1216-1219.
               doi: 10.5121/ijcsea.2017.7501                      doi: 10.1056/NEJMp1606181
            8.  Available  from:  https://www.kaggle.com/datasets/  18.  Choi E, Schuetz A, Stewart WF, Sun J. Using recurrent
               whenamancodes/heart-failure-clinical-records/data. [Last   neural network models for early detection of heart failure
               accessed on 2024 May 30].                          onset. J Am Med Inform Assoc. 2017;24(2):361-370.


            Volume 9 Issue 1 (2025)                        142                              doi: 10.36922/ejmo.6583
   145   146   147   148   149   150   151   152   153   154   155