Page 21 - EJMO-9-2
P. 21

Eurasian Journal of
            Medicine and Oncology                                                 Single-cell sequencing for lung cancer



               2023;13(4):671.                                    cells. Cell. 2015;161(5):1187-1201.
               doi: 10.3390/biom13040671                          doi: 10.1016/j.cell.2015.04.044
            17.  Zhang L, Lee M, Maslov AY, Montagna C, Vijg J, Dong X.   28.  Huang D, Ma N, Li X, et al. Advances in single-cell RNA
               Analyzing somatic mutations by single-cell whole-genome   sequencing and its applications in cancer research. J Hematol
               sequencing. Nat Protoc. 2024;19(2):487-516.        Oncol. 2023;16(1):98.
               doi: 10.1038/s41596-023-00914-8                    doi: 10.1186/s13045-023-01494-6
            18.  Funnell T, O’Flanagan CH, Williams MJ, et al. Single-cell   29.  Li Y, Xu Q, Wu D, Chen G. Exploring additional valuable
               genomic variation induced by mutational processes in   information from single-cell RNA-Seq data. Front Cell Dev
               cancer. Nature. 2022;612(7938):106-115.            Biol. 2020;8:593007.
               doi: 10.1038/s41586-022-05249-0                    doi: 10.3389/fcell.2020.593007
            19.  Liao P, Huang Q, Zhang J, et al. How single-cell techniques   30.  Buenrostro JD, Wu B, Litzenburger UM,  et al. Single-cell
               help  us  look  into  lung  cancer  heterogeneity  and   chromatin  accessibility  reveals  principles  of  regulatory
               immunotherapy. Front Immunol. 2023;14:1238454.     variation. Nature. 2015;523(7561):486-490.
               doi: 10.3389/fimmu.2023.1238454                    doi: 10.1038/nature14590
            20.  Li W, Lu J, Lu P,  et al. scNanoHi-C: A  single-cell long-  31.  Shi P, Nie Y, Yang J, Zhang W, Tang Z, Xu J. Fundamental
               read concatemer sequencing method to reveal high-order   and practical approaches for single-cell ATAC-seq analysis.
               chromatin structures within individual cells. Nat Methods.   aBIOTECH. 2022;3(3):212-223.
               2023;20(10):1493-1505.
                                                                  doi: 10.1007/s42994-022-00082-5
               doi: 10.1038/s41592-023-01978-w
                                                               32.  Schwartzman  O,  Tanay  A.  Single-cell  epigenomics:
            21.  Sasagawa Y, Nikaido I, Hayashi T, et al. Erratum to: Quartz-  Techniques and emerging applications.  Nat Rev Genet.
               Seq: A  highly reproducible and sensitive single-cell RNA   2015;16(12):716-726.
               sequencing method, reveals non-genetic gene-expression      doi: 10.1038/nrg3980
               heterogeneity. Genome Biol. 2017;18(1):R31.
                                                               33.  Macaulay IC, Haerty W, Kumar P, et al. G and T-seq: Parallel
               doi: 10.1186/s13059-017-1154-x
                                                                  sequencing of single-cell genomes and transcriptomes. Nat
            22.  Ramsköld D, Luo S, Wang YC, et al. Full-length mRNA-Seq   Methods. 2015;12(6):519-522.
               from single-cell levels of RNA and individual circulating      doi: 10.1038/nmeth.3370
               tumor cells. Nat Biotechnol. 2012;30(8):777-782.
                                                               34.  Vandereyken K, Sifrim A, Thienpont B, Voet T. Methods
               doi: 10.1038/nbt.2282
                                                                  and applications for single-cell and spatial multi-omics. Nat
            23.  Picelli S, Björklund ÅK, Faridani OR, Sagasser S,   Rev Genet. 2023;24(8):494-515.
               Winberg  G, Sandberg R. Smart-seq2 for sensitive full-     doi: 10.1038/s41576-023-00580-2
               length transcriptome profiling in single cells. Nat Methods.
               2013;10(11):1096-1098.                          35.  Dey  SS,  Kester  L,  Spanjaard  B,  Bienko  M,  Van
                                                                  Oudenaarden  A. Integrated genome and transcriptome
               doi: 10.1038/nmeth.2639
                                                                  sequencing of the same cell.  Nat Biotechnol. 2015;33(3):
            24.  Hashimshony T, Wagner F, Sher N, Yanai I. CEL-Seq: Single-  285-289.
               cell RNA-Seq by multiplexed linear amplification.  Cell      doi: 10.1038/nbt.3129
               Rep. 2012;2(3):666-673.
                                                               36.  Rodriguez-Meira A, Buck G, Clark SA,  et al. Unravelling
               doi: 10.1016/j.celrep.2012.08.003
                                                                  intratumoral heterogeneity through high-sensitivity single-
            25.  Jaitin DA, Kenigsberg E, Keren-Shaul H,  et al. Massively   cell mutational analysis and parallel RNA sequencing. Mol
               parallel single-cell RNA-seq for marker-free decomposition   Cell. 2019;73(6):1292.e8-1305.e8.
               of tissues into cell types. Science. 2014;343(6172):776-779.
                                                                  doi: 10.1016/j.molcel.2019.01.009
               doi: 10.1126/science.1247651
                                                               37.  Yu L, Wang X, Mu Q, et al. scONE-seq: A single-cell multi-
            26.  Macosko EZ, Basu A, Satija R, et al. Highly parallel genome-  omics method enables simultaneous dissection of phenotype
               wide expression profiling of individual cells using nanoliter   and genotype heterogeneity from  frozen tumors. Sci Adv.
               droplets. Cell. 2015;161(5):1202-1214.             2023;9(1):eabp8901.
               doi: 10.1016/j.cell.2015.05.002                    doi: 10.1126/sciadv.abp8901
            27.  Klein AM, Mazutis L, Akartuna I, et al. Droplet barcoding   38.  He L, Wang W, Dang K, Ge Q, Zhao X. Integration of single‐
               for single-cell transcriptomics applied to embryonic stem   cell transcriptome and proteome technologies: Toward


            Volume 9 Issue 2 (2025)                         13                              doi: 10.36922/ejmo.6883
   16   17   18   19   20   21   22   23   24   25   26