Page 81 - EJMO-9-2
P. 81

Eurasian Journal of
            Medicine and Oncology                        Gut microbiota and hyperuricemia: Mechanisms and therapeutic strategies



               Purinergic Signal. 2023;19:315-327.                doi: 10.1016/j.cell.2023.06.010
               doi: 10.1007/s11302-022-09891-1                 50.  Marco ML, Sanders ME, Gänzle M, et al. The International
            40.  Shao T, Shao L, Li H, Xie Z, He Z, Wen C. Combined   Scientific Association for Probiotics and Prebiotics
               signature  of  the  fecal  microbiome  and  metabolome  in   (ISAPP) consensus statement on fermented foods. Nat Rev
               patients with gout. Front Microbiol. 2017;8:268.   Gastroenterol Hepatol. 2021;18(3):196-208.
               doi: 10.3389/fmicb.2017.00268                      doi: 10.1038/s41575-020-00390-5
            41.  Guo Z, Zhang J, Wang Z,  et al. Intestinal microbiota   51.  Dimidi  E,  Christodoulides  S,  Scott  SM,  Whelan  K.
               distinguish gout patients from healthy humans.  Sci   Mechanisms of action of probiotics and the gastrointestinal
               Rep. 2016;6:20602.                                 microbiota on gut motility and constipation.  Adv Nutr.
                                                                  2017;8(3):484-494.
               doi: 10.1038/srep20602
                                                                  doi: 10.3945/an.116.014407
            42.  Chu Y, Sun S, Huang Y, et al. Metagenomic analysis revealed
               the potential role of gut microbiome in gout. NPJ Biofilms   52.  Sanders ME, Merenstein DJ, Reid G, Gibson GR, Rastall RA.
               Microbiomes. 2021;7(1):66.                         Probiotics and prebiotics in intestinal health and disease:
                                                                  from biology to the clinic [published correction appears in
               doi: 10.1038/s41522-021-00235-2                    Nat Rev Gastroenterol Hepatol. 2019;16(10):642.
            43.  He L, Tang W, Huang L, et al. Rational design of a genome-  doi: 10.1038/s41575-019-0199-6].  Nat Rev Gastroenterol
               based insulated system in  Escherichia coli facilitates   Hepatol. 2019;16(10):605-616.
               heterologous uricase expression for hyperuricemia
               treatment. Bioeng Transl Med. 2022;8(2):e10449.     doi: 10.1038/s41575-019-0173-3
               doi: 10.1002/btm2.10449                         53.  Wang H, Mei L, Deng Y, et al. Lactobacillus brevis DM9218
                                                                  ameliorates  fructose-induced  hyperuricemia  through
            44.  Liu X, Lv Q, Ren H, et al. The altered gut microbiota of high-
               purine-induced hyperuricemia rats and its correlation with   inosine degradation and manipulation of intestinal
                                                                  dysbiosis. Nutrition. 2019;62:63-73.
               hyperuricemia. PeerJ. 2020;8:e8664.
                                                                  doi: 10.1016/j.nut.2018.11.018
               doi: 10.7717/peerj.8664
                                                               54.  Rodríguez JM, Garranzo M, Segura J, et al. A randomized
            45.  Sapankaew T, Thadanipon K, Ruenroengbun N,  et al.
               Efficacy and safety of urate-lowering agents in asymptomatic   pilot  trial  assessing  the  reduction  of  gout  episodes
               hyperuricemia: Systematic review and network meta-  in hyperuricemic patients by oral administration of
               analysis of randomized controlled trials.  BMC Nephrol.   Ligilactobacillus salivarius CECT 30632, a strain with the
               2022;23(1):223.                                    ability to degrade purines. Front Microbiol. 2023;14:1111652.
               doi: 10.1186/s12882-022-02850-3                    doi: 10.3389/fmicb.2023.1111652
            46.  Wang J, Chen Y, Zhong H, et al. The gut microbiota as a   55.  Wei Z,  Cui Y, Tian L,  et  al. Probiotic  Lactiplantibacillus
               target  to  control  hyperuricemia  pathogenesis:  Potential   plantarum N-1 could prevent ethylene glycol-induced
               mechanisms and therapeutic strategies.  Crit Rev Food Sci   kidney stones by regulating gut microbiota and enhancing
               Nutr. 2022;62(14):3979-3989.                       intestinal barrier function. FASEB J. 2021;35(11):e21937.
               doi: 10.1080/10408398.2021.1874287                 doi: 10.1096/fj.202100887RR
            47.  Dong L, Dong F, Guo P,  et al. Gut microbiota as a new   56.  Li Y, Zhu J, Lin G, et al. Probiotic effects of Lacticaseibacillus
               target for hyperuricemia: A perspective from natural plant   rhamnosus 1155 and Limosilactobacillus fermentum 2644 on
               products. Phytomedicine. 2025;138:156402.          hyperuricemic rats. Front Nutr. 2022;9:993951.
               doi: 10.1016/j.phymed.2025.156402                  doi: 10.3389/fnut.2022.993951
            48.  Ananthakrishnan AN, Luo C, Yajnik V,  et al. Gut   57.  Ni C, Li X, Wang L, et al. Lactic acid bacteria strains relieve
               microbiome  function  predicts  response  to  anti-integrin   hyperuricaemia by suppressing xanthine oxidase activity via
               biologic therapy in inflammatory bowel diseases. Cell Host   a short-chain fatty acid-dependent mechanism. Food Funct.
               Microbe. 2017;21(5):603-610.e3.                    2021;12(15):7054-7067.
               doi: 10.1016/j.chom.2017.04.010                    doi: 10.1039/d1fo00198a
            49.  Liu Y, Jarman JB, Low YS, et al. A widely distributed gene   58.  Zou Y, Ro KS, Jiang C, et al. The anti-hyperuricemic and gut
               cluster compensates for uricase loss in hominids [published   microbiota regulatory effects of a novel purine assimilatory
               correction appears in Cell. 2023;186(20):4472-4473.  strain, Lactiplantibacillus plantarum X7022 [published
                                                                  correction appears in Eur J Nutr. 2024;63(5):1997.
               doi: 10.1016/j.cell.2023.08.036].  Cell. 2023;186(16):3400-
               3413.e20.                                          doi:  10.1007/s00394-024-03382-2].   Eur  J  Nutr.


            Volume 9 Issue 2 (2025)                         73                              doi: 10.36922/ejmo.8579
   76   77   78   79   80   81   82   83   84   85   86