Page 45 - GPD-1-2
P. 45
Gene & Protein in Disease RUNX1 gene in female-related cancers
estrogen-regulated transcriptional and cellular responses in informs breast cancer response to aromatase inhibition.
mouse uterus. FASEB J, 27(5): 1874–1886. Nature, 486(7403): 353–360.
https://doi.org/10.1096/fj.12-213462 https://doi.org/10.1038/nature11143
93. Stender JD, Kim K, Charn TH, et al., 2010, Genome-wide 104. Banerji S, Cibulskis K, Rangel-Escareno C, et al., 2012,
analysis of estrogen receptor α DNA binding and tethering Sequence analysis of mutations and translocations across
mechanisms identifies runx1 as a novel tethering factor in breast cancer subtypes. Nature, 486(7403): 405–409.
receptor-mediated transcriptional activation. Mol Cell Biol, https://doi.org/10.1038/nature11154
30(16): 3943–3955.
105. Doll A, Gonzalez M, Abal M, et al., 2009, An orthotopic
https://doi.org/10.1128/MCB.00118-10 endometrial cancer mouse model demonstrates a role for
94. Candelaria NR, Liu K, Lin CY, 2013, Estrogen receptor RUNX1 in distant metastasis. Int J Cancer, 125(2): 257–263.
alpha: Molecular mechanisms and emerging insights. J Cell https://doi.org/10.1002/ijc.24330
Biochem, 114(10): 2203–2208.
106. Planagumà J, Díaz-Fuertes M, Gil-Moreno A, et al., 2004,
https://doi.org/10.1002/jcb.24584 A differential gene expression profile reveals overexpression
95. Hewitt SC, O’Brien JE, Jameson JL, et al., 2009, Selective of runx1/aml1 in invasive endometrioid carcinoma. Cancer
disruption of erα DNA-binding activity alters uterine Res, 64(24): 8846–8853.
responsiveness to estradiol. Mol Endocrinol, 23(12): https://doi.org/10.1158/0008-5472.CAN-04-2066
2111–2116.
107. Qu J, Tanis SE, Smits JP, et al., 2018, Mutant p63 affects
https://doi.org/10.1210/me.2009-0356 epidermal cell identity through rewiring the enhancer
96. Hovey RC, Trott JF, Vonderhaar BK, 2002, Establishing landscape. Cell Rep, 25(12): 3490–3503.e4.
a framework for the functional mammary gland: From https://doi.org/10.1016/j.celrep.2018.11.039
endocrinology to morphology. J Mammary Gland Biol
Neoplasia, 7(1): 17–38. 108. Xiao L, Peng Z, Zhu A, et al., 2020, Inhibition of RUNX1
promotes cisplatin-induced apoptosis in ovarian cancer
https://doi.org/10.1023/a:1015766322258 cells. Biochem Pharmacol, 180: 114116.
97. Mallepell S, Krust A, Chambon P, et al., 2006, Paracrine https://doi.org/10.1016/j.bcp.2020.114116
signaling through the epithelial estrogen receptor α is required
for proliferation and morphogenesis in the mammary gland. 109. Han S, Zhu J, Zhang Y, 2018, Mir-144 potentially suppresses
Proc Natl Acad Sci U S A, 103(7): 2196–2201. proliferation and migration of ovarian cancer cells by
targeting runx1. Med Sci Monit Basic Res, 24: 40–46.
https://doi.org/10.1073/pnas.0510974103
https://doi.org/10.12659/msmbr.907333
98. Janes KA, 2011, RUNX1 and its understudied role in breast
cancer. Cell Cycle, 10(20): 3461–3465. 110. Ge T, Yin M, Yang M, et al., 2014, Microrna-302b suppresses
human epithelial ovarian cancer cell growth by targeting
https://doi.org/10.4161/cc.10.20.18029 runx1. Cell Physiol Biochem, 34(6): 2209–2220.
99. Couse JF, Korach KS, 1999, Estrogen receptor null mice: https://doi.org/10.1159/000369664
What have we learned and where will they lead us? Endoc
Rev, 20(3): 358–417. 111. Kurita T, Mills AA, Cunha GR, 2004, Roles of p63 in
the diethylstilbestrol-induced cervicovaginal adenosis.
https://doi.org/10.1210/edrv.20.3.0370 Development, 131: 1639–1649.
100. Yamagata T, Maki K, et al., 2005, Runx1/aml1 in normal and https://doi.org/10.1242/dev.01038
abnormal hematopoiesis. Int J Hematol, 82(1): 1–8.
112. Marouf C, Gohler S, Filho MI, et al., 2016, Analysis of
https://doi.org/10.1532/IJH97.05075 functional germline variants in APOBEC3 and driver genes
101. Ramaswamy S, Ross KN, Lander ES, et al., 2003, A molecular on breast cancer risk in Moroccan study population. BMC
signature of metastasis in primary solid tumors. Nat Genet, Cancer, 16: 165.
33(1): 49–54. https://doi.org/10.1186/s12885-016-2210-8
https://doi.org/10.1038/ng1060 113. Rody A, Karn T, Liedtke C, et al., 2011, A clinically relevant
gene signature in triple negative and basal‐like breast cancer.
102. Cbioportal for Cancer Genomics. Available from: https://
www.cbioportal.org/results/cancerTypesSummary?case- Breast Cancer Res, 13: R97.
set-id=all-gene-list-RUNX1-cancer-study-list- https://doi.org/10.1186/bcr3035
5c8a7d55e4b046111fee2296dit [Last accessed on 2020 Oct 05].
114. Karn T, Pusztai L, Holtrich U, et al., 2011, Homogeneous
103. Ellis MJ, Ding L, Shen D, et al., 2012, Whole-genome analysis datasets of triple negative breast cancers enable the
Volume 1 Issue 2 (2022) 16 https://doi.org/10.36922/gpd.v1i2.147

