Page 45 - GPD-1-2
P. 45

Gene & Protein in Disease                                            RUNX1 gene in female-related cancers



               estrogen-regulated transcriptional and cellular responses in   informs breast cancer response to aromatase inhibition.
               mouse uterus. FASEB J, 27(5): 1874–1886.           Nature, 486(7403): 353–360.
               https://doi.org/10.1096/fj.12-213462               https://doi.org/10.1038/nature11143
            93.  Stender JD, Kim K, Charn TH, et al., 2010, Genome-wide   104. Banerji  S,  Cibulskis  K,  Rangel-Escareno  C,  et al.,  2012,
               analysis of estrogen receptor α DNA binding and tethering   Sequence analysis of mutations and translocations across
               mechanisms identifies runx1 as a novel tethering factor in   breast cancer subtypes. Nature, 486(7403): 405–409.
               receptor-mediated transcriptional activation. Mol Cell Biol,      https://doi.org/10.1038/nature11154
               30(16): 3943–3955.
                                                               105. Doll A, Gonzalez M, Abal M,  et  al., 2009, An orthotopic
               https://doi.org/10.1128/MCB.00118-10               endometrial cancer mouse model demonstrates a role for
            94.  Candelaria NR, Liu K, Lin CY, 2013, Estrogen receptor   RUNX1 in distant metastasis. Int J Cancer, 125(2): 257–263.
               alpha: Molecular mechanisms and emerging insights. J Cell      https://doi.org/10.1002/ijc.24330
               Biochem, 114(10): 2203–2208.
                                                               106. Planagumà J, Díaz-Fuertes M, Gil-Moreno A, et al., 2004,
               https://doi.org/10.1002/jcb.24584                  A differential gene expression profile reveals overexpression
            95.  Hewitt SC, O’Brien JE, Jameson JL,  et al., 2009, Selective   of runx1/aml1 in invasive endometrioid carcinoma. Cancer
               disruption of erα DNA-binding activity alters uterine   Res, 64(24): 8846–8853.
               responsiveness to estradiol.  Mol  Endocrinol, 23(12):      https://doi.org/10.1158/0008-5472.CAN-04-2066
               2111–2116.
                                                               107. Qu J, Tanis SE, Smits JP,  et al., 2018, Mutant p63 affects
               https://doi.org/10.1210/me.2009-0356               epidermal cell identity through rewiring the enhancer

            96.  Hovey RC, Trott JF, Vonderhaar BK, 2002, Establishing   landscape. Cell Rep, 25(12): 3490–3503.e4.
               a framework for the functional mammary gland: From      https://doi.org/10.1016/j.celrep.2018.11.039
               endocrinology to morphology.  J  Mammary  Gland  Biol
               Neoplasia, 7(1): 17–38.                         108. Xiao L, Peng Z, Zhu A, et al., 2020, Inhibition of RUNX1
                                                                  promotes cisplatin-induced apoptosis in ovarian cancer
               https://doi.org/10.1023/a:1015766322258            cells. Biochem Pharmacol, 180: 114116.
            97.  Mallepell  S,  Krust  A,  Chambon  P,  et al.,  2006,  Paracrine      https://doi.org/10.1016/j.bcp.2020.114116
               signaling through the epithelial estrogen receptor α is required
               for proliferation and morphogenesis in the mammary gland.   109. Han S, Zhu J, Zhang Y, 2018, Mir-144 potentially suppresses
               Proc Natl Acad Sci U S A, 103(7): 2196–2201.       proliferation and migration of ovarian cancer  cells by
                                                                  targeting runx1. Med Sci Monit Basic Res, 24: 40–46.
               https://doi.org/10.1073/pnas.0510974103
                                                                  https://doi.org/10.12659/msmbr.907333
            98.  Janes KA, 2011, RUNX1 and its understudied role in breast
               cancer. Cell Cycle, 10(20): 3461–3465.          110. Ge T, Yin M, Yang M, et al., 2014, Microrna-302b suppresses
                                                                  human epithelial ovarian cancer cell growth by targeting
               https://doi.org/10.4161/cc.10.20.18029             runx1. Cell Physiol Biochem, 34(6): 2209–2220.
            99.  Couse JF, Korach KS, 1999, Estrogen receptor null mice:      https://doi.org/10.1159/000369664
               What have we learned and where will they lead us? Endoc
               Rev, 20(3): 358–417.                            111. Kurita T, Mills AA, Cunha GR, 2004, Roles of p63 in
                                                                  the diethylstilbestrol-induced cervicovaginal adenosis.
               https://doi.org/10.1210/edrv.20.3.0370             Development, 131: 1639–1649.
            100. Yamagata T, Maki K, et al., 2005, Runx1/aml1 in normal and      https://doi.org/10.1242/dev.01038
               abnormal hematopoiesis. Int J Hematol, 82(1): 1–8.
                                                               112. Marouf C, Gohler S, Filho MI,  et al., 2016, Analysis of
               https://doi.org/10.1532/IJH97.05075                functional germline variants in APOBEC3 and driver genes
            101. Ramaswamy S, Ross KN, Lander ES, et al., 2003, A molecular   on breast cancer risk in Moroccan study population. BMC
               signature of metastasis in primary solid tumors. Nat Genet,   Cancer, 16: 165.
               33(1): 49–54.                                      https://doi.org/10.1186/s12885-016-2210-8
               https://doi.org/10.1038/ng1060                  113. Rody A, Karn T, Liedtke C, et al., 2011, A clinically relevant
                                                                  gene signature in triple negative and basal‐like breast cancer.
            102.  Cbioportal for Cancer Genomics. Available from: https://
               www.cbioportal.org/results/cancerTypesSummary?case-  Breast Cancer Res, 13: R97.
               set-id=all-gene-list-RUNX1-cancer-study-list-      https://doi.org/10.1186/bcr3035
               5c8a7d55e4b046111fee2296dit [Last accessed on 2020 Oct 05].
                                                               114. Karn T, Pusztai L, Holtrich U, et al., 2011, Homogeneous
            103. Ellis MJ, Ding L, Shen D, et al., 2012, Whole-genome analysis   datasets of triple negative breast cancers enable the



            Volume 1 Issue 2 (2022)                         16                     https://doi.org/10.36922/gpd.v1i2.147
   40   41   42   43   44   45   46   47   48   49   50