Page 36 - GPD-2-3
P. 36

Gene & Protein in Disease                                           Signatures construction strategies for TC



            29.  Liu T, You X, Sui J, et al., 2019, Prognostic value of a two-  40.  Zhong LK, Gan XX, Deng XY, et al., 2020, Potential five-
               microRNA signature for papillary thyroid cancer and a   mRNA signature model for the prediction of prognosis in
               bioinformatic analysis of their possible functions.  J  Cell   patients with papillary thyroid carcinoma. Oncol Lett, 20(3):
               Biochem, 120: 7185–7198.                           2302–2310.
               https://doi.org/10.1002/jcb.27993                  https://doi.org/10.3892/ol.2020.11781
            30.  Ma Y, Yin S, Liu XF, et al., 2021, Comprehensive analysis of   41.  Li Q, Li H, Zhang L, et al., 2017, Identification of novel long
               the functions and prognostic value of RNA-binding proteins   non-coding  RNA  biomarkers  for prognosis prediction  of
               in thyroid cancer. Front Oncol, 11: 625007.        papillary thyroid cancer. Oncotarget, 8(28): 46136–46144.
               https://doi.org/10.3389/fonc.2021.625007           https://doi.org/10.18632/oncotarget.17556
            31.  Qian X, Tang J, Li L, et al., 2021, A new ferroptosis-related   42.  Luo  YH,  Liang  L,  He  RQ,  et al.,  2017,  RNA-sequencing
               gene model for prognostic prediction of papillary thyroid   investigation identifies an effective risk score generated by
               carcinoma. Bioengineered, 12(1): 2341–2351.        three novel lncRNAs for the survival of papillary thyroid
               https://doi.org/10.1080/21655979.2021.1935400      cancer patients. Oncotarget, 8(43): 74139–74158.
            32.  Xu F, Xu H, Li Z,  et al., 2021, Glycolysis-based genes      https://doi.org/10.18632/oncotarget.18274
               are potential biomarkers in thyroid cancer.  Front  Oncol,   43.  Zhang Y, Jin T, Shen H, et al., 2019, Identification of long
               11: 534838.                                        non-coding RNA expression profiles and co-expression
               https://doi.org/10.3389/fonc.2021.534838           genes in thyroid carcinoma based on the cancer genome
                                                                  atlas (TCGA) database. Med Sci Monit, 25: 9752–9769.
            33.  You X, Yang S, Sui J, et al., 2018, Molecular characterization
               of papillary thyroid carcinoma: A potential three-lncRNA      https://doi.org/10.12659/MSM.917845
               prognostic signature. Cancer Manag Res, 10: 4297–4310.  44.  Chengfeng X, Gengming C, Junjia Z, et al., 2019, MicroRNA
               https://doi.org/10.2147/CMAR.S174874               signature predicts survival in papillary thyroid carcinoma.
                                                                  J Cell Biochem, 120(10): 17050–17058.
            34.  Huang Y, Yi T, Liu Y, et al., 2021, The landscape of tumors-
               infiltrate immune cells in papillary thyroid carcinoma and      https://doi.org/10.1002/jcb.28966
               its prognostic value. PeerJ, 9: e11494.         45.  Li Q, Jiang S, Feng T,  et al., 2021, Identification of the
               https://doi.org/10.7717/peerj.11494                EMT-related genes signature for predicting occurrence
                                                                  and progression in thyroid cancer. Onco Targets Ther, 14:
            35.  Ren H, Liu X, Li F, et al., 2021, Identification of a six gene   3119–3131.
               prognosis signature for papillary thyroid cancer using multi-
               omics methods and bioinformatics analysis.  Front  Oncol,      https://doi.org/10.2147/OTT.S301127
               11: 624421.                                     46.  Lin R, Fogarty CE, Ma B,  et  al., 2021, Identification of
               https://doi.org/10.3389/fonc.2021.624421           ferroptosis genes in immune infiltration and prognosis in
                                                                  thyroid papillary carcinoma using network analysis. BMC
            36.  Ruchong P, Haiping T, Xiang W, 2021, A five-gene prognostic   Genomics, 22(1): 576.
               nomogram predicting disease-free survival of differentiated
               thyroid cancer. Dis Markers, 2021: 5510780.        https://doi.org/10.1186/s12864-021-07895-6
               https://doi.org/10.1155/2021/5510780            47.  Lv L, Cao L, Hu G, et al., 2020, Methylation-driven genes
                                                                  identified as novel prognostic indicators for thyroid
            37.  Saftencu M, Braicu C, Cojocneanu R,  et al., 2019, Gene   carcinoma. Front Genet, 11: 294.
               expression patterns unveil new insights in papillary thyroid
               cancer. Medicina (Kaunas), 55(8): 500.             https://doi.org/10.3389/fgene.2020.00294
               https://doi.org/10.3390/medicina55080500        48.  Xu N, Chen J, He G,  et al., 2020, Prognostic values of
                                                                  m6A RNA methylation regulators in differentiated thyroid
            38.  Wu M, Li S, Han J, et al., 2020, Progression risk assessment of   carcinoma. J Cancer, 11(17): 5187–5197.
               post-surgical papillary thyroid carcinoma based on circular
               RNA-associated competing endogenous RNA mechanisms.      https://doi.org/10.7150/jca.41193
               Front Cell Dev Biol, 8: 606327.                 49.  Hou J, Shan H, Zhang Y, et al., 2020, m A RNA methylation
                                                                                              6
               https://doi.org/10.3389/fcell.2020.606327          regulators have prognostic value in papillary thyroid
                                                                  carcinoma. Am J Otolaryngol, 41(4): 102547.
            39.  Xu L, Liu F, Li H, et al., 2021, Comprehensive characterization
               of pathological stage-related genes of papillary thyroid      https://doi.org/10.1016/j.amjoto.2020.102547
               cancer along with survival prediction.  J  Cell  Mol  Med,   50.  Suh HY, Choi H, Paeng JC, et al., 2019, Comprehensive gene
               25(17): 8390–8404.
                                                                  expression analysis for exploring the association between
               https://doi.org/10.1111/jcmm.16799                 glucose metabolism and differentiation of thyroid cancer.


            Volume 2 Issue 3 (2023)                         20                       https://doi.org/10.36922/gpd.1138
   31   32   33   34   35   36   37   38   39   40   41