Page 37 - GPD-2-3
P. 37
Gene & Protein in Disease Signatures construction strategies for TC
BMC Cancer, 19(1): 1260. https://doi.org/10.1038/s41580-018-0080-4
https://doi.org/10.1186/s12885-019-6482-7 62. Dawson MA, Kouzarides T, 2012, Cancer epigenetics: From
mechanism to therapy. Cell, 150(1): 12–27.
51. Han B, Yang M, Yang X, et al., 2021, Systematic analysis of
survival-associated alternative splicing signatures in thyroid https://doi.org/10.1016/j.cell.2012.06.013
carcinoma. Front Oncol, 11: 561457.
63. Ilango S, Paital B, Jayachandran P, et al., 2020, Epigenetic
https://doi.org/10.3389/fonc.2021.561457 alterations in cancer. Front Biosci, (Landmark Ed), 25(6):
1058–1109.
52. Lin P, He RQ, Huang ZG, et al., 2019, Role of global aberrant
alternative splicing events in papillary thyroid cancer https://doi.org/10.2741/4847
prognosis. Aging (Albany NY), 11(7): 2082–2097.
64. Zafon C, Gil J, Perez-Gonzalez B, et al., 2019, DNA
https://doi.org/10.18632/aging.101902 methylation in thyroid cancer. Endocr Relat Cancer, 26(7):
R415–R439.
53. Han Y, Yu X, Yin Y, et al., 2021, Identification of potential
BRAF inhibitor joint therapy targets in PTC based on https://doi.org/10.1530/ERC-19-0093
WGCAN and DCGA. J Cancer, 12(6): 1779–1791.
65. Russo D, Damante G, Puxeddu E, et al., 2011, Epigenetics
https://doi.org/10.7150/jca.51551 of thyroid cancer and novel therapeutic targets. J Mol
Endocrinol, 46(3): R73–R81.
54. Gandolfi G, Ragazzi M, de Biase D, et al., 2018, Genome-
wide profiling identifies the THYT1 signature as a distinctive https://doi.org/10.1530/JME-10-0150
feature of widely metastatic Papillary Thyroid Carcinomas. 66. Wang X, Fu X, Zhang J, et al., 2020, Identification and
Oncotarget, 9(2): 1813–1825.
validation of m A RNA methylation regulators with clinical
6
https://doi.org/10.18632/oncotarget.22805 prognostic value in Papillary thyroid cancer. Cancer Cell Int,
20: 203.
55. Zhang Y, Zhang R, Liang F, 2020, Identification of
metabolism-associated prostate cancer subtypes and https://doi.org/10.1186/s12935-020-01283-y
construction of a prognostic risk model. Front Oncol, 67. Kushchayeva Y, Kushchayev S, Jensen K, et al., 2022,
10: 598801.
Impaired glucose metabolism, anti-diabetes medications,
https://doi.org/10.3389/fonc.2020.598801 and risk of thyroid cancer. Cancers (Basel), 14(3): 555.
56. Wang K, Xu J, Zhao L, et al., 2020, Prognostic lncRNA, https://doi.org/10.3390/cancers14030555
miRNA, and mRNA signatures in papillary thyroid 68. Heydarzadeh S, Moshtaghie AA, Daneshpoor M, et al., 2020,
carcinoma. Front Genet, 11: 805.
Regulators of glucose uptake in thyroid cancer cell lines. Cell
https://doi.org/10.3389/fgene.2020.00805 Commun Signal, 18(1): 83.
57. Yu H, Guo P, Xie X, et al., 2017, Ferroptosis, a new form https://doi.org/10.1186/s12964-020-00586-x
of cell death, and its relationships with tumourous diseases. 69. Davidson CD, Tomczak JA, Amiel E, et al., 2022, Inhibition
J Cell Mol Med, 21(4): 648–657.
of glycogen metabolism induces reactive oxygen species-
https://doi.org/10.1111/jcmm.13008 dependent cytotoxicity in anaplastic thyroid cancer in
female mice. Endocrinology, 163(12): bqac169.
58. Murakami H, Hayashi M, Terada S, et al., 2023,
Medroxyprogesterone acetate-resistant endometrial https://doi.org/10.1210/endocr/bqac169
cancer cells are susceptible to ferroptosis inducers. Life Sci, 70. Matsuzu K, Segade F, Matsuzu U, et al., 2004, Differential
325: 121753.
expression of glucose transporters in normal and pathologic
https://doi.org/10.1016/j.lfs.2023.121753 thyroid tissue. Thyroid, 14(10): 806–812.
59. Cao JY, Dixon SJ, 2016, Mechanisms of ferroptosis. Cell Mol https://doi.org/10.1089/thy.2004.14.806
Life Sci, 73(11–12): 2195–2209.
71. Marima R, Francies FZ, Hull R, et al., 2021, MicroRNA and
https://doi.org/10.1007/s00018-016-2194-1 alternative mRNA splicing events in cancer drug response/
resistance: Potent therapeutic targets. Biomedicines,
60. Kim SE, Zhang L, Ma K, et al., 2016, Ultrasmall nanoparticles
induce ferroptosis in nutrient-deprived cancer cells and 9(12): 1818.
suppress tumour growth. Nat Nanotechnol, 11(11): 977–985. https://doi.org/10.3390/biomedicines9121818
https://doi.org/10.1038/nnano.2016.164 72. Climente-Gonzalez H, Porta-Pardo E, Godzik A, et al.,
2017, The functional impact of alternative splicing in cancer.
61. Dongre A, Weinberg RA, 2019, New insights into the
mechanisms of epithelial-mesenchymal transition and Cell Rep, 20(9): 2215–2226.
implications for cancer. Nat Rev Mol Cell Biol, 20(2): 69–84. https://doi.org/10.1016/j.celrep.2017.08.012
Volume 2 Issue 3 (2023) 21 https://doi.org/10.36922/gpd.1138

