Page 37 - GPD-2-3
P. 37

Gene & Protein in Disease                                           Signatures construction strategies for TC



               BMC Cancer, 19(1): 1260.                           https://doi.org/10.1038/s41580-018-0080-4
               https://doi.org/10.1186/s12885-019-6482-7       62.  Dawson MA, Kouzarides T, 2012, Cancer epigenetics: From
                                                                  mechanism to therapy. Cell, 150(1): 12–27.
            51.  Han B, Yang M, Yang X, et al., 2021, Systematic analysis of
               survival-associated alternative splicing signatures in thyroid      https://doi.org/10.1016/j.cell.2012.06.013
               carcinoma. Front Oncol, 11: 561457.
                                                               63.  Ilango S, Paital B, Jayachandran P, et al., 2020, Epigenetic
               https://doi.org/10.3389/fonc.2021.561457           alterations in  cancer.  Front Biosci, (Landmark Ed), 25(6):
                                                                  1058–1109.
            52.  Lin P, He RQ, Huang ZG, et al., 2019, Role of global aberrant
               alternative splicing events in papillary thyroid cancer      https://doi.org/10.2741/4847
               prognosis. Aging (Albany NY), 11(7): 2082–2097.
                                                               64.  Zafon C, Gil J, Perez-Gonzalez B,  et al., 2019, DNA
               https://doi.org/10.18632/aging.101902              methylation in thyroid cancer. Endocr Relat Cancer, 26(7):
                                                                  R415–R439.
            53.  Han Y, Yu X, Yin Y, et al., 2021, Identification of potential
               BRAF inhibitor joint therapy targets in PTC based on      https://doi.org/10.1530/ERC-19-0093
               WGCAN and DCGA. J Cancer, 12(6): 1779–1791.
                                                               65.  Russo D, Damante G, Puxeddu E, et al., 2011, Epigenetics
               https://doi.org/10.7150/jca.51551                  of thyroid cancer and novel therapeutic targets.  J  Mol
                                                                  Endocrinol, 46(3): R73–R81.
            54.  Gandolfi G, Ragazzi M, de Biase D, et al., 2018, Genome-
               wide profiling identifies the THYT1 signature as a distinctive      https://doi.org/10.1530/JME-10-0150
               feature of widely metastatic Papillary Thyroid Carcinomas.   66.  Wang X, Fu X, Zhang J,  et al., 2020, Identification and
               Oncotarget, 9(2): 1813–1825.
                                                                  validation of m A RNA methylation regulators with clinical
                                                                             6
               https://doi.org/10.18632/oncotarget.22805          prognostic value in Papillary thyroid cancer. Cancer Cell Int,
                                                                  20: 203.
            55.  Zhang Y, Zhang R, Liang F, 2020, Identification of
               metabolism-associated prostate cancer subtypes and      https://doi.org/10.1186/s12935-020-01283-y
               construction  of  a  prognostic  risk  model.  Front  Oncol,   67.  Kushchayeva Y, Kushchayev S, Jensen K,  et al., 2022,
               10: 598801.
                                                                  Impaired glucose metabolism, anti-diabetes medications,
               https://doi.org/10.3389/fonc.2020.598801           and risk of thyroid cancer. Cancers (Basel), 14(3): 555.
            56.  Wang K, Xu J, Zhao L,  et al., 2020, Prognostic lncRNA,      https://doi.org/10.3390/cancers14030555
               miRNA, and mRNA signatures in papillary thyroid   68.  Heydarzadeh S, Moshtaghie AA, Daneshpoor M, et al., 2020,
               carcinoma. Front Genet, 11: 805.
                                                                  Regulators of glucose uptake in thyroid cancer cell lines. Cell
               https://doi.org/10.3389/fgene.2020.00805           Commun Signal, 18(1): 83.
            57.  Yu H, Guo P, Xie X, et al., 2017, Ferroptosis, a new form      https://doi.org/10.1186/s12964-020-00586-x
               of cell death, and its relationships with tumourous diseases.   69.  Davidson CD, Tomczak JA, Amiel E, et al., 2022, Inhibition
               J Cell Mol Med, 21(4): 648–657.
                                                                  of glycogen metabolism induces reactive oxygen species-
               https://doi.org/10.1111/jcmm.13008                 dependent cytotoxicity in  anaplastic  thyroid  cancer  in
                                                                  female mice. Endocrinology, 163(12): bqac169.
            58.  Murakami H, Hayashi M, Terada S,  et al., 2023,
               Medroxyprogesterone  acetate-resistant  endometrial     https://doi.org/10.1210/endocr/bqac169
               cancer cells are susceptible to ferroptosis inducers. Life Sci,   70.  Matsuzu K, Segade F, Matsuzu U, et al., 2004, Differential
               325: 121753.
                                                                  expression of glucose transporters in normal and pathologic
               https://doi.org/10.1016/j.lfs.2023.121753          thyroid tissue. Thyroid, 14(10): 806–812.
            59.  Cao JY, Dixon SJ, 2016, Mechanisms of ferroptosis. Cell Mol      https://doi.org/10.1089/thy.2004.14.806
               Life Sci, 73(11–12): 2195–2209.
                                                               71.  Marima R, Francies FZ, Hull R, et al., 2021, MicroRNA and
               https://doi.org/10.1007/s00018-016-2194-1          alternative mRNA splicing events in cancer drug response/
                                                                  resistance:  Potent  therapeutic  targets.  Biomedicines,
            60.  Kim SE, Zhang L, Ma K, et al., 2016, Ultrasmall nanoparticles
               induce ferroptosis in nutrient-deprived cancer cells and   9(12): 1818.
               suppress tumour growth. Nat Nanotechnol, 11(11): 977–985.     https://doi.org/10.3390/biomedicines9121818
               https://doi.org/10.1038/nnano.2016.164          72.  Climente-Gonzalez H, Porta-Pardo E, Godzik A,  et al.,
                                                                  2017, The functional impact of alternative splicing in cancer.
            61.  Dongre A, Weinberg RA, 2019, New insights into the
               mechanisms of epithelial-mesenchymal transition and   Cell Rep, 20(9): 2215–2226.
               implications for cancer. Nat Rev Mol Cell Biol, 20(2): 69–84.     https://doi.org/10.1016/j.celrep.2017.08.012


            Volume 2 Issue 3 (2023)                         21                       https://doi.org/10.36922/gpd.1138
   32   33   34   35   36   37   38   39   40   41   42