Page 21 - GPD-3-4
P. 21

Gene & Protein in Disease                                               Human sirtuins (SIRT1-7) in cancer



            105. Khongkow M, Olmos Y, Gong C,  et al. SIRT6 modulates   116. Zhao Q, Zhou J, Li F,  et al. The role and therapeutic
               paclitaxel and epirubicin resistance and survival in breast   perspectives of sirtuin 3 in cancer metabolism
               cancer. Carcinogenesis. 2013;34(7):1476-1486.      reprogramming, metastasis, and chemoresistance.  Front
               doi: 10.1093/carcin/bgt098                         Oncol. 2022;12:910963.
            106.  Wang  L,  Guo  W,  Ma  J,  et al.  Aberrant  SIRT6  expression      doi: 10.3389/fonc.2022.910963
               contributes to melanoma growth: Role of the autophagy paradox   117. Ianni A, Kumari P, Tarighi S, Braun T, Vaquero A. SIRT7:
               and IGF-AKT signaling. Autophagy. 2018;14(3):518-533.  A novel molecular target for personalized cancer treatment?
               doi: 10.1080/15548627.2017.1384886                 Oncogene. 2024;43(14):993-1006.
            107. Cagnetta A, Soncini D, Orecchioni S, et al. Depletion of      doi: 10.1038/s41388-024-02976-8
               SIRT6 enzymatic activity increases acute myeloid leukemia   118. Chen PT, Yeong KY. New sirtuin modulators: Their
               cells’ vulnerability to DNA-damaging agents. Haematologica.   uncovering, pharmacophore, and implications in drug
               2018;103(1):80-90.                                 discovery. Med Chem Res. 2024;33:1064-1078.
               doi: 10.3324/haematol.2017.176248                  doi: 10.1007/s00044-024-03249-5
            108. Kim JK, Noh JH, Jung KH, et al. Sirtuin7 oncogenic potential   119.  Deus CM, Serafim TL, Magalhães-Novais S,  et  al. Sirtuin
               in human hepatocellular carcinoma and its regulation by the   1-dependent resveratrol cytotoxicity and pro-differentiation
               tumor suppressors MiR-125a-5p and MiR-125b. Hepatology.   activity on breast cancer cells. Arch Toxicol. 2017;91(3):1261-1278.
               2013;57(3):1055-1067.
                                                                  doi: 10.1007/s00204-016-1784-x
               doi: 10.1002/hep.26101
                                                               120. Li L, Fu S, Wang J, et al. SRT1720 inhibits bladder cancer
            109. Monteiro-Reis S, Lameirinhas A, Miranda-Gonçalves V, et al.   cell  progression by  impairing  autophagic  flux.  Biochem
               Sirtuins’ deregulation in bladder cancer: SIRT7 is implicated   Pharmacol. 2024;222:116111.
               in tumor progression through epithelial to mesenchymal
               transition promotion. Cancers (Basel). 2020;12(5):1066.     doi: 10.1016/j.bcp.2024.116111
               doi: 10.3390/cancers12051066                    121. Tan P, Wang M, Zhong A, et al. SRT1720 inhibits the growth
                                                                  of bladder cancer in organoids and murine models through
            110. Paredes  S,  Villanova  L,  Chua  KF.  Molecular  pathways:   the SIRT1-HIF axis. Oncogene. 2021;40(42):6081-6092.
               Emerging roles of mammalian Sirtuin SIRT7 in cancer. Clin
               Cancer Res. 2014;20:1741-1746.                     doi: 10.1038/s41388-021-01999-9
               doi: 10.1158/1078-0432.CCR-13-1547              122. Fatehi D, Soltani A, Ghatrehsamani M. SRT1720, a potential
                                                                  sensitizer for radiotherapy and cytotoxicity effects of NVB-
            111. Huo Q, Chen S, Zhuang J, Quan C, Wang Y, Xie N. SIRT7
               downregulation  promotes  breast  cancer  metastasis  via   BEZ235 in metastatic breast cancer cells. Pathol Res Pract.
               LAP2α-induced chromosomal instability.  Int J Biol Sci.   2018;214(6):889-895.
               2023;19(5):1528-1542.                              doi: 10.1016/j.prp.2018.04.001
               doi: 10.7150/ijbs.75340                         123. Han L, Long Q, Li S,  et  al. Senescent stromal cells
            112. Wang HL, Lu RQ, Xie SH, et al. SIRT7 exhibits oncogenic   promote cancer resistance through SIRT1 loss-potentiated
               potential in human ovarian cancer cells. Asian Pac J Cancer   overproduction of small extracellular vesicles. Cancer Res.
               Prev. 2015;16(8):3573-3537.                        2020;80(16):3383-3398.
               doi: 10.7314/apjcp.2015.16.8.3573                  doi: 10.1158/0008-5472.CAN-20-0506
            113. Liu X, Li C, Li Q, Chang HC, Tang YC. SIRT7 facilitates   124. Chowdhury S, Sripathy S, Webster A,  et al. Discovery of
               CENP-A nucleosome assembly and suppresses intestinal   selective SIRT2 inhibitors as therapeutic agents in B-cell
               tumorigenesis. iScience. 2020;23(9):101461.        lymphoma and other malignancies. Molecules. 2020;25(3):455.
               doi: 10.1016/j.isci.2020.101461                    doi: 10.3390/molecules25030455
            114. Yu H, Ye W, Wu J,  et al. Overexpression of sirt7 exhibits   125. Hirai S, Endo S, Saito R, et al. Antitumor effects of a sirtuin
               oncogenic property and serves as a prognostic factor in   inhibitor, tenovin-6, against gastric cancer cells via death
               colorectal cancer. Clin Cancer Res. 2014;20(13):3434-3445.  receptor 5 up-regulation. PLoS One. 2014;9(7):e102831.
               doi: 10.1158/1078-0432.CCR-13-2952                 doi: 10.1371/journal.pone.0102831
            115. Tang M, Lu X, Zhang C, et al. Downregulation of SIRT7 by   126. Dai H, Sinclair DA, Ellis JL, Steegborn C. Sirtuin activators
               5-fluorouracil induces radiosensitivity in human colorectal   and inhibitors: Promises, achievements, and challenges.
               cancer. Theranostics. 2017;7(5):1346-1359.         Pharmacol Ther. 2018;188:140-154.
               doi: 10.7150/thno.18804                            doi: 10.1016/j.pharmthera.2018.03.004


            Volume 3 Issue 4 (2024)                         13                              doi: 10.36922/gpd.4100
   16   17   18   19   20   21   22   23   24   25   26