Page 105 - GPD-4-2
P. 105

Gene & Protein in Disease                                           Significance of MXRA7 in bladder cancer



               doi: 10.1371/journal.pone.0089219                  sim380>3.0.co;2-3
            16.  Lohavanichbutr P, Houck J, Fan W,  et al. Genomewide   27.  Ritchie ME, Phipson B, Wu D,  et al. limma powers
               gene expression profiles of HPV-positive and HPV-  differential expression analyses for RNA-sequencing and
               negative oropharyngeal cancer: Potential implications   microarray studies. Nucleic Acids Res. 2015;43(7):e47.
               for treatment choices.  Arch Otolaryngol Head Neck Surg.
               2009;135(2):180-188.                               doi: 10.1093/nar/gkv007
                                                               28.  Sherman  BT,  Hao  M,  Qiu  J,  et al.  DAVID:  A  web  server
               doi: 10.1001/archoto.2008.540
                                                                  for functional enrichment analysis and functional
            17.  Holtkamp N, Mautner VF, Friedrich RE, et al. Differentially   annotation of gene lists (2021 update).  Nucleic Acids Res.
               expressed genes in neurofibromatosis 1-associated   2022;50(W1):W216-W221.
               neurofibromas and malignant peripheral nerve sheath
               tumors. Acta Neuropathol. 2004;107(2):159-168.     doi: 10.1093/nar/gkac194
                                                               29.  Huang DW, Sherman BT, Lempicki RA. Systematic and
               doi: 10.1007/s00401-003-0797-8
                                                                  integrative analysis of large gene lists using DAVID
            18.  Ganguly A, Shields CL. Differential gene expression profile   bioinformatics resources. Nat Protoc. 2009;4(1):44-57.
               of  retinoblastoma  compared  to  normal  retina.  Mol  Vis.
               2010;16:1292-1303.                                 doi: 10.1038/nprot.2008.211
            19.  Ling Y, Li J, Zhou L. Smoking-related epigenetic modifications   30.  Zhang L, Wang Q, Wang L, et al. OSskcm: An online survival
               are associated with the prognosis and chemotherapeutics of   analysis webserver for skin cutaneous melanoma based on
               patients with bladder cancer. Int J Immunopathol Pharmacol.   1085 transcriptomic profiles. Cancer Cell Int. 2020;20:185.
               2023;37:3946320231166774.                          doi: 10.1186/s12935-020-01250-4
               doi: 10.1177/03946320231166774                  31.  Piper Vallillo AJ, Viray H, Feldman J, Rangachari D.
            20.  Chen Q, Yin G, He X, et al. Establishment and validation of   Management of treatment resistance in patients with
               a tumor microenvironment prognostic model for predicting   advanced epidermal growth factor receptor–mutated lung
               bladder cancer survival status based on integrated   cancer: Personalization, parsimony, and partnership. J Clin
               bioinformatics analyses.  Evid Based Complement Alternat   Oncol. 2024;42(11):1215-1221.
               Med. 2022;2022:4351005.                            doi: 10.1200/JCO.23.01420
               doi: 10.1155/2022/4351005                       32.  Shen W, Song Z, Zhong X, et al. Sangerbox: A comprehensive,
            21.  Sung H, Ferlay J, Siegel RL,  et al. Global cancer statistics   interaction-friendly  clinical  bioinformatics  analysis
               2020: GLOBOCAN estimates of incidence and mortality   platform. iMeta. 2022;1(3):e36.
               worldwide for 36 cancers in 185 countries. CA Cancer J Clin.      doi: 10.1002/imt2.36
               2021;71(3):209-249.
                                                               33.  Breheny P, Huang PB.  High-Dimensional Regression
               doi: 10.3322/caac.21660                            Modeling: Methodology, Applications, and Software. United
            22.  Lenis AT, Lec PM, Chamie K. Bladder cancer: A  review.   States: CRC Press; 2024.
               JAMA. 2020;324(19):1980-1991.                   34.  Kantidakis G, Putter H, Lancia C, de Boer J, Braat  AE,
               doi: 10.1001/jama.2020.17598                       Fiocco  M. Survival prediction models since liver
                                                                  transplantation-comparisons between Cox models and
            23.  Lopez-Beltran A, Cookson MS, Guercio BJ, Cheng L.   machine  learning  techniques.  BMC  Med  Res  Methodol.
               Advances in diagnosis and treatment of bladder cancer.   2020;20:105.
               BMJ. 2024;384:e076743.
                                                                  doi: 10.1186/s12874-020-00997-4
               doi: 10.1136/bmj-2023-076743
                                                               35.  Afrin  S, Shamrat  FJM,  Nibir TI,  et al. Supervised
            24.  Peng M, Xiao D, Bu Y, et al. Novel combination therapies for   machine learning based liver disease prediction approach
               the treatment of bladder cancer. Front Oncol. 2021;10:539527.  with LASSO feature selection.  Bull Electr Eng Inform.
               doi: 10.3389/fonc.2020.539527                      2021;10(6):3369-3376.
            25.  Zhang B, He Y, Ma G, et al. Identification of stemness index-     doi: 10.11591/eei.v10i6.3205
               related long noncoding RNA SNHG12 in human bladder   36.  Liu D. The Analysis of Junior middle school students’
               cancer based on WGCNA. Mol Cell Probes. 2022;66:101867.  perceptions regarding English homework from the
               doi: 10.1016/j.mcp.2022.101867                     perspective of double reduction policy. Trans Comp Educ.
                                                                  2024;6(5):1-6.
            26.  Tibshirani R. The lasso method for variable selection in the
               Cox model. Stat Med. 1997;16(4):385-395.           doi: 10.23977/trance.2024.060501
               doi:   10.1002/(sici)1097-0258(19970228)16:4<385::aid-  37.  Zhou ZR, Wang WW, Li Y, et al. In-depth mining of clinical


            Volume 4 Issue 2 (2025)                         10                              doi: 10.36922/gpd.6256
   100   101   102   103   104   105   106   107   108   109   110