Page 54 - GTM-2-3
P. 54

Global Translational Medicine                                           Deep learning by NMR-biochemical



               of  proton and 13C  NMR  study  of  glutamate  metabolism   secondary progressive multiple sclerosis: A  magnetic
               in cultured glial cells and human brain in vivo. Biochemie,   resonance spectroscopic imaging study.  J  Neurol,
               73: 93–97.                                         265: 1795–1802.
               https://doi.org/10.1016/0300-9084(91)90080-k       https://doi.org/10.1007/s00415-018-8903-y
            12.  Zia  B,  Bogia  DP,  2020,  Fast  Fourier  Transform  and   22.  Filippi M, Rocca MA, Rovaris M, 2002, Clinical trials and
               Convolution  in  Medical  Image  Reconstruction.  Available   clinical practice in multiple sclerosis: Conventional and
               from: https://www.intel.com/content/www/us/en/developer/  emerging magnetic resonance imaging technologies.  Curr
               articles/technical/fast-fourier-transform-and-convolution-  Neurol Neurosci Rep, 2: 267–276.
               in-medical-image-reconstruction.html  [Last  accessed  on      https://doi.org/10.1007/s11910-002-0086-2
               2019 Nov 30].
                                                               23.  Zuo J, Joseph GB, Li X, et al., 2012, In vivo intervertebral disc
            13.  Iqbal Z, Nguyen D, Thomas MA, et al., 2021, Deep learning   characterization using magnetic resonance spectroscopy and
               can accelerate and quantify simulated localized correlated   T1ρ imaging: Association with discography and Oswestry
               spectroscopy. Sci Rep, 11: 8727.
                                                                  Disability Index and Short Form-36 Health Survey. Spine
            14.  Yang J, Lei D, Qin K, et al., 2021, Using deep learning to   (Phila Pa 1976), 37: 214–221.
               classify pediatric posttraumatic stress disorder at the      https://doi.org/10.1097/BRS.0b013e3182294a63
               individual level. BMC Psychiatry, 21: 535.
                                                               24.  Tartaglia MC, Arnold DL, 2006, The role of MRS and fMRI
               https://doi.org/10.1186/s12888-021-03503-9
                                                                  in multiple sclerosis. Adv Neurol, 98: 185–202.
            15.  Balakrishnan R, Valdés Hernández MDC, Farrall AJ, 2021,   25.  Miller DH, Albert PS, Barkhof F, et al., 1996, Guidelines for
               Automatic segmentation of white matter hyperintensities   the use of magnetic resonance techniques in monitoring the
               from brain magnetic resonance images in the era of deep
               learning and big data - A systematic review. Comput Med   treatment of multiple sclerosis. US National MS Society Task
               Imaging Graph, 88: 101867.                         Force. Ann Neurol, 39: 6–16.
                                                                  https://doi.org/10.1002/ana.410390104
               https://doi.org/10.1016/j.compmedimag.2021.101867
                                                               26.  Binesh N, Yue K, Fairbanks L, et al., 2002, Reproducibility of
            16.  Terpstra ML, Maspero M, Sbrizzi A,  et al., 2022, A   localized 2D correlated MR spectroscopy. Magn Reson Med,
               symmetric loss function for magnetic resonance imaging
               reconstruction and image registration with deep learning.   48: 942–948.
               Med Image Anal, 80: 102509.                        https://doi.org/10.1002/mrm.10307
               https://doi.org/10.1016/j.media.2022.102509     27.  Jung  JA,  Coakley  FV,  Vigneron  DB,  et al., 2004, Prostate
                                                                  depiction at endorectal MR spectroscopic imaging:
            17.  Chen D, Wang Z, Guo D, 2020, Review and prospect: Deep
               learning in nuclear magnetic resonance spectroscopy.   Investigation of a standardized evaluation system. Radiology,
               Chemistry, 26: 10391–10401.                        233: 701–708.
                                                                  https://doi.org/10.1148/radiol.2333030672
               https://doi.org/10.1002/chem.202000246
                                                               28.  Boesch  SM,  Wolf  C,  Seppi  K,  et al., 2007, Differentiation
            18.  Li X, Strasser B, Neuberger U, et al., 2022, Deep learning   of SCA2 from MSA-C using proton magnetic resonance
               super-resolution magnetic resonance spectroscopic imaging
               of brain metabolism and mutant isocitrate dehydrogenase   spectroscopic imaging. J Magn Reson Imaging, 25: 564–569.
               glioma. Neurooncol Adv, 4: vdac071.                https://doi.org/10.1002/jmri.20846
               https://doi.org/10.1093/noajnl/vdac071          29.  Kahleova  H,  Petersen  KF,  Shulman  GI,  et al.,  2020,
                                                                  Effect of a low-fat vegan diet on body weight, insulin
            19.  Migdadi L, Lambert J, Telfah A,  et  al., 2021, Automated
               metabolic assignment: Semi-supervised learning in   sensitivity, postprandial metabolism, and intramyocellular
               metabolic analysis employing two dimensional Nuclear   and hepatocellular lipid levels in overweight adults:
               Magnetic Resonance (NMR).  Comput Struct Biotechnol J,   A randomized clinical trial. JAMA Netw Open, 3: e2025454.
               19: 5047–5058.                                     https://doi.org/10.1001/jamanetworkopen.2020.25454
            20.  Sarma MK, Nagarajan R, Macey PM, et al., 2014, Accelerated   30.  Smits M, 2021, MRI biomarkers in neuro-oncology. Nat Rev
               echo-planar J-resolved spectroscopic imaging in the human   Neurol, 17: 486–500.
               brain using compressed sensing: A  pilot validation in      https://doi.org/10.1038/s41582-021-00510-y
               obstructive sleep apnea. AJNR Am J Neuroradiol, 35: S81–S89.
                                                               31.  Galanaud D, Haik S, Linguraru MG, et al, 2010, Combined
               https://doi.org/10.3174/ajnr.A3846
                                                                  diffusion imaging and MR spectroscopy in the diagnosis
            21.  Marshall  I,  Thrippleton  MJ,  Bastin  ME,  et al., 2018,   of human prion diseases.  AJNR Am J Neuroradiol,
               Characterisation of tissue-type metabolic content in   31: 1311–1318.


            Volume 2 Issue 3 (2023)                         22                        https://doi.org/10.36922/gtm.337
   49   50   51   52   53   54   55   56   57   58   59