Page 59 - GTM-2-3
P. 59

Global Translational Medicine                                           Deep learning by NMR-biochemical



               of  Neonatal  Encephalopathy.  UpToDate.  Waltham,  MA:   124. Ng YS, Bindoff LA, Gorman GS, et al., 2019, Consensus-
               UpToDate.                                          based statements for the management of mitochondrial
                                                                  stroke-like episodes. Wellcome Open Res, 4: 201.
            116. Zou R, Xiong T, Zhang L,  et al., 2018, Proton magnetic
               resonance spectroscopy biomarkers in neonates with      https://doi.org/10.12688/wellcomeopenres.15599.1
               hypoxic-ischemic encephalopathy: A systematic review and
               meta-analysis. Front Neurol, 9: 732.            125. O’Ferrall E, 2021, Mitochondrial Myopathies: Clinical
                                                                  Features and Diagnosis. UpToDate. Waltham, MA:
               https://doi.org/10.3389/fneur.2018.00732           UpToDate.
            117. Veeramuthu V, Seow P, Narayanan V, et al., 2018,   126. Weinreb  JC,  Blume  JD,  Coakley  FV,  et al., 2009, Prostate
               Neurometabolites alteration in the acute phase of mild   cancer: Sextant localization at MR imaging and MR
               traumatic brain injury (mTBI): An in vivo proton magnetic   spectroscopic  imaging  before  prostatectomy--  results  of
               resonance spectroscopy (1H-MRS) study.  Acad Radiol,   ACRIN  prospective  multi-institutional  clinicopathologic
               25: 1167–1177.                                     study. Radiology, 251: 122–133.
               https://doi.org/10.1016/j.acra.2018.01.005         https://doi.org/10.1148/radiol.2511080409
            118. Eisele A, Hill-Strathy M, Michels L, et al., 2020, Magnetic   127. Wang Z, Li Y, Lam F, 2022, High-resolution, 3D multi-TE
               resonance spectroscopy following mild traumatic brain   1 H MRSI using fast spatiospectral encoding and subspace
               injury: A  systematic review and meta-analysis on the   imaging. Magn Reson Med, 87: 1103–1118.
               potential to detect posttraumatic neurodegeneration.
               Neurodegener Dis, 20: 2–11.                     128. Li Y, Wang Z, Sun R, et al., 2021, Separation of metabolites
                                                                  and macromolecules for short-TE 1H-MRSI using learned
               https://doi.org/10.1159/000508098                  component-specific representations.  IEEE Trans Med
            119. Kondratyeva EA, Diment SV, Kondratyev SA, et al., 2019,   Imaging, 40: 1157–1167.
               Magnetic resonance spectroscopy data in the prognosis of      https://doi.org/10.1109/TMI.2020.3048933
               consciousness recovery in patients with vegetative state. Zh
               Nevrol Psikhiatr Im S S Korsakova, 119: 7–14.   129. Li Y, Wang Z, Lam F, 2022, SNR enhancement for multi-TE
                                                                  MRSI using joint low-dimensional model and spatial
               https://doi.org/10.17116/jnevro20191191017         constraints. IEEE Trans Biomed Eng, 69: 3087–3097.
            120. Finnell DS, 2015, A clinical translation of the article      https://doi.org/10.1109/TBME.2022.3161417
               titled, The utility of magnetic resonance spectroscopy for
               understanding substance use disorders: A systematic review   130. Dong  S,  Hangel  G,  Chen  EZ,  et  al., 2022, Flow-based
               of the literature. J Am Psychiatr Nurses Assoc, 21: 276–278.   visual  quality  enhancer  for  super-resolution  magnetic
                                                                  resonance spectroscopic imaging. In: Mukhopadhyay A,
               https://doi.org/10.1177/1078390315598605           Oksuz I, Engelhardt S, et al., (eds) Deep Generative Models.
            121. Frittoli  RB,  Pereira  DR,  Rittner  L,  et al., 2020, Proton   DGM4MICCAI 2022. Lecture Notes in Computer Science.
               magnetic resonance spectroscopy (1 H-MRS) in rheumatic   Vol. 13609. Cham: Springer.
               autoimmune diseases: A  systematic review.  Lupus,      https://doi.org/10.1007/978-3-031-18576-2_1
               29: 1873–1884.
                                                               131. Li  X,  Strasser  B,  Jafari‑Khouzani  K,  et al., 2020, Super-
               https://doi.org/10.1177/0961203320961466           resolution whole-brain 3D MR spectroscopic imaging for
            122. Fernandez-Vega N, Ramos-Rodriguez JR, Alfaro F,  et  al.,   mapping D-2-hydroxyglutarate and tumor metabolism
               2021, Usefulness of magnetic resonance spectroscopy   in  isocitrate  dehydrogenase  1-mutated  human  gliomas.
               in mesial temporal sclerosis: A  systematic review.   Radiology, 294: 589–597.
               Neuroradiology, 63: 1395–1405.                     https://doi.org/10.1148/radiol.2020191529
               https://doi.org/10.1007/s00234-021-02704-z
                                                               132. Wang L, Chen G, Dai K, 2022, Hydrogen proton magnetic
            123. Hovsepian  DA,  Galati  A,  Chong  RA,  et al., 2019,   resonance spectroscopy (MRS) in differential diagnosis of
               MELAS: Monitoring treatment with magnetic resonance   intracranial tumors: A  systematic review.  Contrast Media
               spectroscopy. Acta Neurol Scand, 139: 82–85.       Mol Imaging, 18: 7242192.
               https://doi.org/10.1111/ane.13027                  https://doi.org/10.1155/2022/7242192












            Volume 2 Issue 3 (2023)                         27                        https://doi.org/10.36922/gtm.337
   54   55   56   57   58   59   60   61   62   63   64