Page 30 - GTM-3-1
P. 30
Global Translational Medicine Role of HTS in cancer therapeutics
Aurora A and Aurora B as molecular targets for growth 189. Dekker FJ, Haisma HJ. Histone acetyl transferases as
inhibition of pancreatic cancer cells. Mol Cancer Ther. emerging drug targets. Drug Discov Today. 2009;14(19‑
2006;5(10):2450‑2458. 20):942‑948.
doi: 10.1158/1535‑7163.Mct‑06‑0202 doi: 10.1016/j.drudis.2009.06.008
180. Wang W, Kim SH, El-Deiry WS. Small-molecule 190. Miles DW. Update on HER‑2 as a target for cancer therapy:
modulators of p53 family signaling and antitumor effects Herceptin in the clinical setting. Breast Cancer Res.
in p53-deficient human colon tumor xenografts. Proc Natl 2001;3(6):380‑384.
Acad Sci U S A. 2006;103(29):11003‑11008.
doi: 10.1186/bcr326
doi: 10.1073/pnas.0604507103
191. Kelland LR, Smith V, Valenti M, et al. Preclinical antitumor
181. Maloney A, Workman P. HSP90 as a new therapeutic
target for cancer therapy: The story unfolds. Expert Opin activity and pharmacodynamic studies with the farnesyl
Biol Ther. 2002;2(1):3‑24. protein transferase inhibitor R115777 in human breast
cancer. Clin Cancer Res. 2001;7(11):3544‑3550.
doi: 10.1517/14712598.2.1.3
192. Johnston SR. Farnesyl transferase inhibitors: A novel
182. Magwenyane AM, Ugbaja SC, Amoako DG, Somboro
AM, Khan RB, Kumalo HM. Heat shock protein 90 targeted tnerapy for cancer. Lancet Oncol. 2001;2(1):18‑26.
(HSP90) inhibitors as anticancer medicines: A review doi: 10.1016/s1470‑2045(00)00191‑1
on the computer-aided drug discovery approaches
over the past five years. Comput Math Methods Med. 193. Nicholls H. Aromatase inhibitors continue their ATAC on
2022;2022:2147763. tamoxifen. Trends Mol Med. 2002;8(4 Suppl):S12‑S13.
doi: 10.1155/2022/2147763 doi: 10.1016/s1471‑4914(02)02304‑3
183. Bos R, Zhong H, Hanrahan CF, et al. Levels of hypoxia‑ 194. Buzdar AU. Anastrozole (Arimidex)‑‑an aromatase
inducible factor-1 alpha during breast carcinogenesis. inhibitor for the adjuvant setting? Br J Cancer.
J Natl Cancer Inst. 2001;93(4):309‑314. 2001;85 Suppl 2(Suppl 2):6‑10.
doi: 10.1093/jnci/93.4.309 doi: 10.1054/bjoc.2001.1983
184. Semenza GL. HIF‑1 and tumor progression: 195. Chen B, Dodge ME, Tang W, et al. Small molecule‑
Pathophysiology and therapeutics. Trends Mol Med. mediated disruption of Wnt-dependent signaling in tissue
2002;8(4 Suppl):S62‑S67. regeneration and cancer. Nat Chem Biol. 2009;5(2):100‑107.
doi: 10.1016/s1471‑4914(02)02317‑1 doi: 10.1038/nchembio.137
185. Masoud GN, Li W. HIF‑1α pathway: Role, regulation 196. Zhang N, Wu B, Powell D, et al. Synthesis and structure‑
and intervention for cancer therapy. Acta Pharm Sin B.
2015;5(5):378‑389. activity relationships of 3-cyano-4-(phenoxyanilino)
quinolines as MEK (MAPKK) inhibitors. Bioorg Med
doi: 10.1016/j.apsb.2015.05.007 Chem Lett. 2000;10(24):2825‑2828.
186. Workman P. Scoring a bull’s-eye against cancer genome doi: 10.1016/S0960‑894X(00)00580‑1
targets. Curr Opin Pharmacol. 2001;1(4):342‑352.
197. Berger D, Dutia M, Powell D, et al. Synthesis and evaluation
doi: 10.1016/s1471‑4892(01)00060‑1
of 4-anilino-6,7-dialkoxy-3-quinolinecarbonitriles as
187. Mahlknecht U, Hoelzer D. Histone acetylation modifiers inhibitors of kinases of the Ras-MAPK signaling cascade.
in the pathogenesis of malignant disease. Mol Med. Bioorg Med Chem Lett. 2003;13(18):3031‑3034.
2000;6(8):623‑644.
doi: 10.1016/s0960‑894x(03)00640‑1
188. Turlais F, Hardcastle A, Rowlands M, et al. High-throughput
screening for identification of small molecule inhibitors of 198. Fry DW, Kraker AJ, McMichael A, et al. A specific inhibitor
histone acetyltransferases using scintillating microplates of the epidermal growth factor receptor tyrosine kinase.
(FlashPlate). Anal Biochem. 2001;298(1):62‑68. Science. 1994;265(5175):1093‑1095.
doi: 10.1006/abio.2001.5340 doi: 10.1126/science.8066447
Volume 3 Issue 1 (2024) 22 https://doi.org/10.36922/gtm.2448

