Page 100 - GTM-3-2
P. 100

Global Translational Medicine                                        Targeted detection in Barrett’s neoplasia



            6.   Kariv R, Plesec TP, Goldblum JR, et al. The Seattle protocol   Nat Genet. 2013;45:478-486.
               does not more reliably predict the detection of cancer at the      doi: 10.1038/ng.2591
               time of esophagectomy than a less intensive surveillance
               protocol.  Clin Gastroenterol Hepatol.  2009;7:653-658;   12.  Chen J, Jiang Y, Chang TS,  et al. Multiplexed endoscopic
               quiz 606.                                          imaging of Barrett’s neoplasia using targeted fluorescent
                                                                  heptapeptides in a phase 1 proof-of-concept study.  Gut.
               doi: 10.1016/j.cgh.2008.11.024                     2021;70:1010-1013.
            7.   Sharma P, Savides TJ, Canto MI,  et al. The American      doi: 10.1136/gutjnl-2020-322945
               society for gastrointestinal endoscopy PIVI (preservation
               and incorporation of valuable endoscopic innovations)   13.  Chen J, Jiang Y, Chang TS,  et al. Detection of Barrett’s
               on imaging in Barrett’s esophagus.  Gastrointest Endosc.   neoplasia with a near-infrared fluorescent heterodimeric
               2012;76:252-254.                                   peptide. Endoscopy. 2022;54:1198-1204.

               doi: 10.1016/j.gie.2012.05.007                     doi: 10.1055/a-1801-2406
            8.   Sturm MB, Wang TD. Endoscopic imaging techniques: Beyond   14.  Chen J, Zhou J, Gao Z,  et al. Multiplexed targeting of
               narrow band. Am J Gastroenterol. 2018;113(8):1103-1107.  Barrett’s neoplasia with a heterobivalent ligand: Imaging
                                                                  study on mouse xenograft  in vivo and human specimens
               doi: 10.1038/s41395-018-0054-3                     ex vivo. J Med Chem. 2018;61:5323-5331.
            9.   Struyvenberg MR, de Groof AJ, van der Putten J,  et  al.      doi: 10.1021/acs.jmedchem.8b00405
               A  computer-assisted  algorithm  for  narrow-band  imaging-
               based tissue characterization in Barrett’s esophagus.   15.  Chen J, Gao Z, Li G, Wang TD. Dual-modal in vivo fluorescence
               Gastrointest Endosc. 2021;93(1):89-98.             and photoacoustic imaging using a heterodimeric peptide.
                                                                  Chem Commun (Camb). 2018;54:13196-13199.
               doi: 10.1016/j.gie.2020.05.050
                                                                  doi: 10.1039/c8cc06774k
            10.  ASGE Technology Committee, Thosani N, Abu Dayyeh BK,
               et  al. ASGE technology committee systematic review   16.  Jiang Y, Gong Y, Rubenstein JH, Wang TD, Seibel EJ.
               and  meta-analysis  assessing  the  ASGE  preservation   Toward real-time quantification of fluorescence molecular
               and  incorporation  of  valuable  endoscopic  innovations   probes using target/background ratio for guiding biopsy and
               thresholds for adopting real-time imaging-assisted   endoscopic therapy of esophageal neoplasia. J Med Imaging
               endoscopic targeted biopsy during endoscopic surveillance   (Bellingham). 2017;4(2):024502.
               of Barrett’s esophagus. Gastrointest Endosc. 2016;83(4):684-     doi: 10.1117/1.JMI.4.2.024502
               698.e7.
                                                               17.  Jiang Y, Chen J, Gong C, Wang TD, Seibel EJ. Deep-learning-
               doi: 10.1016/j.gie.2016.01.007                     based real-time and automatic target-to-background ratio
                                                                  calculation in fluorescence endoscopy for cancer detection
            11.  Dulak AM, Stojanov P, Peng S,  et  al. Exome and whole-
               genome sequencing of esophageal adenocarcinoma     and localization. Diagnostics (Basel). 2022;12:2031.
               identifies recurrent driver events and mutational complexity.      doi: 10.3390/diagnostics12092031






























            Volume 3 Issue 2 (2024)                         5                               doi: 10.36922/gtm.2223
   95   96   97   98   99   100   101   102