Page 18 - GTM-4-2
P. 18

Global Translational Medicine                                       Game-changing drug response prediction



            Acknowledgments                                       doi: 10.1126/scitranslmed.aaw8412

            None.                                              6.   Idrisova KF, Simon HU, Gomzikova MO. Role of patient-
                                                                  derived models of cancer in translational oncology. Cancers
            Funding                                               (Basel). 2022;15(1):139.

            None.                                                 doi: 10.3390/cancers15010139
                                                               7.   Bashor CJ, Hilton IB, Bandukwala H, Smith DM, Veiseh O.
            Conflict of interest                                  Engineering the next generation of cell-based therapeutics.
                                                                  Nat Rev Drug Discov. 2022;21:655-675.
            The authors declare no conflicts of interest.
                                                                  doi: 10.1038/s41573-022-00476-6
            Author contributions                               8.   Kim  J,  Koo  BK,  Knoblich  JA.  Human  organoids:  Model

            Conceptualization: Chen Yeh                           systems for human biology and medicine. Nat Rev Mol Cell
            Visualization: Shu-Ti Lin, Sharon Yeh                 Biol. 2020;21:571-584.
            Writing–original draft: Chen Yeh, Andre Baranski      doi: 10.1038/s41580-020-0259-3
            Writing–review & editing: All authors              9.   Yeh C. Enabling real-world data to accelerate the

            Ethics approval and consent to participate            development of innovative cancer biomarkers.  Glob Med
                                                                  Genet. 2023;10:97-100.
            Not applicable.                                       doi: 10.1055/s-0043-1768993

            Consent for publication                            10.  Haslam A, Kim MS, Prasad V. Updated estimates of eligibility
                                                                  for and response to genome-targeted oncology drugs among
            Not applicable.                                       US cancer patients, 2006-2020.  Ann Oncol. 2021;32(7):
                                                                  926-932.
            Availability of data
                                                                  doi: 10.1016/j.annonc.2021.04.003
            Not applicable.
                                                               11.  Yeh C, Lin ST, Lai HC. A transformative technology linking
            References                                            patient’s mRNA expression profile to anticancer drug
                                                                  efficacy. Onco. 2024;4(3):143-162.
            1.   World Health Organization.  Cancer Fact Sheet. World      doi: 10.3390/onco4030012
               Health Organization; 2022. Available from: https://www.
               who.int/news-room/fact-sheets/detail/cancer [Last accessed   12.  He D, Liu Q, Wu Y, Xie L. A context-aware deconfounding
               on 2024 Aug 13].                                   autoencoder for robust prediction of personalized clinical
                                                                  drug response from cell-line compound screening.  Nat
            2.   Wong CH, Siah KW, Lo AW. Corrigendum: Estimation   Mach Intell. 2022;4:879-892.
               of clinical trial success rates and related parameters.
               Biostatistics. 2018;20(2):366-366.                 doi: 10.1038/s42256-022-00541-0
               doi: 10.1093/biostatistics/kxy072               13.  Sagingalieva A, Kordzanganeh M, Kenbayev N, Kosichkina D,
                                                                  Tomashuk T, Melnikov A. Hybrid quantum neural
            3.   Davis C, Naci H, Gurpinar E, Poplavska E, Pinto A,   network for drug response prediction.  Cancers (Basel).
               Aggarwal A. Availability of evidence of benefits on overall   2023;15(10):2705.
               survival and quality of life of cancer drugs approved by
               European Medicines Agency: Retrospective cohort study of      doi: 10.3390/cancers15102705
               drug approvals 2009-13. BMJ. 2017;359:j4530.    14.  Liu X, Zhang W. A  subcomponent-guided deep learning
               doi: 10.1136/bmj.j4530                             method for interpretable cancer drug response prediction.
                                                                  PLoS Comput Biol. 2023;19(8):e1011382.
            4.   Kim C, Prasad V. Cancer drugs approved on the basis of
               a surrogate end point and subsequent overall survival: An      doi: 10.1371/journal.pcbi.1011382
               analysis of 5  years of US Food and Drug Administration   15.  Yang Y, Li P. GPDRP: A  multimodal framework for
               Approvals. JAMA Intern Med. 2015;175(12):1992-1994.  drug response prediction with  graph transformer.  BMC
               doi: 10.1001/jamainternmed.2015.5868               Bioinformatics. 2023;24:484.
            5.   Lin A, Giuliano CJ, Palladino A, et al. Off-target toxicity is a      doi: 10.1186/s12859-023-05618-0
               common mechanism of action of cancer drugs undergoing   16.  Taj F, Stein LD. MMDRP: Drug response prediction and
               clinical trials. Sci Transl Med. 2019;11(509):eaaw8412.  biomarker discovery using multi-modal deep learning.




            Volume 4 Issue 2 (2025)                         10                              doi: 10.36922/gtm.5091
   13   14   15   16   17   18   19   20   21   22   23