Page 149 - IJB-10-1
P. 149

International Journal of Bioprinting                                 Bioprinting organoids for toxicity testing




            70.  Mao S, Pang Y, Liu T, et al. Bioprinting of in vitro tumor   82.  Molander D, Sbirkov Y, Sarafian V. 3D bioprinting as an
               models for personalized cancer treatment: A review.   emerging standard for cancer modeling and drug testing.
               Biofabrication, 2020;12(4):042001.                 Folia Med (Plovdiv), 2022;64(4):559-565.
               doi: 10.1088/1758-5090/ab97c0                      doi: 10.3897/folmed.64.e73419
            71.  Staros R, Michalak A, Rusinek K, et al.  Perspectives for   83.  Kang Y, Datta P, Shanmughapriya S, et al. 3D bioprinting
               3D-bioprinting in modeling of tumor immune evasion.   of tumor models for cancer research. ACS Appl Bio Mater.
               Cancers (Basel), 2022;14(13):3126.                 2020;3(9):5552-5573.
               doi: 10.3390/cancers14133126                       doi: 10.1021/acsabm.0c00791
            72.  Jung M, Ghamrawi S, Du EY, et al. Advances in 3D bioprinting   84.  Hwang DG, Choi YM, Jang  J. 3D bioprinting-based
               for cancer biology and precision medicine: From matrix   vascularized  tissue models mimicking tissue-specific
               design to application.  Adv Healthc Mater. 2022;11(24):   architecture and pathophysiology for in vitro studies. Front
               e2200690.                                          Bioeng Biotechnol. 2021;9: 685507.
               doi: 10.1002/adhm.202200690                        doi: 10.3389/fbioe.2021.685507
            73.  Ringquist R, Ghoshal D, Jain R, et al. Understanding and   85.  Yang H, Yang KH, Narayan RJ, et al. Laser-based bioprinting
               improving cellular immunotherapies against cancer: From   for multilayer cell patterning in tissue engineering and cancer
               cell-manufacturing to tumor-immune models.  Adv Drug   research. Essays Biochem. 2021;65(3):409-416.
               Deliv Rev. 2021;179: 114003.                       doi: 10.1042/EBC20200093
               doi: 10.1016/j.addr.2021.114003
                                                               86.  Tiwari AP, Thorat ND, Pricl S, et al. Bioink: a 3D-bioprinting
            74.  Parodi I, Di Lisa D, Pastorino L, et al.  3D bioprinting as a    tool for anticancer drug discovery and cancer management.
               powerful technique for recreating the tumor microenviron-  Drug Discov Today. 2021;26(7):1574-1590.
               ment. Gels. 2023;9(6):482.                         doi: 10.1016/j.drudis.2021.03.010
               doi: 10.3390/gels9060482
                                                               87.  Prashantha K, Krishnappa A, Muthappa M. 3D bioprinting
            75.  Germain N, Dhayer M, Dekiouk S, et al. Current advances   of gastrointestinal cancer models: A comprehensive review
               in 3D bioprinting for cancer  modeling and personalized   on processing, properties, and therapeutic implications.
               medicine. Int J Mol Sci. 2022;23(7):3432.          Biointerphases. 2023;18(2):020801.
               doi: 10.3390/ijms23073432                          doi: 10.1116/6.0002372
            76.  Jubelin  C,  Muñoz-Garcia  J,  Griscom  L,  et  al.  Three-  88.  Palikuqi B, Nguyen DT, Li G, et al., 2020, Adaptable
               dimensional in vitro culture models in oncology research.   haemodynamic endothelial cells for organogenesis and
               Cell Biosci. 2022;12(1):155.                       tumorigenesis. Nature, 585(7825):426-432.
               doi: 10.1186/s13578-022-00887-3                    doi: 10.1038/s41586-020-2712-z
            77.  Wang R, Zhang C, Li D, et al. Tumor-on-a-chip: Perfusable   89.  Wang D, Guo Y, Zhu J, et al. Hyaluronic acid methacrylate/
               vascular incorporation brings new approach to tumor   pancreatic extracellular matrix as a potential 3D printing
               metastasis research and drug development.  Front Bioeng   bioink for constructing islet organoids.  Acta Biomater.
               Biotechnol. 2022;10: 1057913.                      2023;165: 86-101.
               doi: 10.3389/fbioe.2022.1057913                    doi: 10.1016/j.actbio.2022.06.036
            78.  Neufeld L, Yeini E, Pozzi S, et al.  3D bioprinted cancer   90.  Hakobyan D, Médina C, Dusserre N, et al. Laser-assisted 3D
               models: From basic biology to drug development. Nat Rev   bioprinting of exocrine pancreas spheroid models for cancer
               Cancer. 2022;22(12):679-692.                       initiation study. Biofabrication. 2020;12(3):035001.
               doi: 10.1038/s41568-022-00514-w                    doi: 10.1088/1758-5090/ab7cb8
            79.  Visalakshan RM, Lowrey MK, Sousa MGC, et al.   91.  Zhuang X, Deng G, Wu X, et al. Recent advances of three-
               Opportunities  and  challenges  to  engineer  3D  models  of   dimensional bioprinting technology in hepato-pancreato-
               tumor-adaptive immune interactions.  Front  Immunol.   biliary cancer models. Front Oncol. 2023;13: 1143600.
               2023;14: 1162905.                                  doi: 10.3389/fonc.2023.1143600
               doi: 10.3389/fimmu.2023.1162905
                                                               92.  Pignatelli C, Campo F, Neroni A, et al. Bioengineering the
            80.  Murphy SV, De Coppi P, Atala A. Opportunities and   vascularized endocrine pancreas: A fine-tuned interplay
               challenges of translational 3D bioprinting. Nat Biomed Eng.   between vascularization, extracellular-matrix-based scaffold
               2020;4(4):370-380.                                 architecture, and insulin-producing cells.  Transpl Int.
               doi: 10.1038/s41551-019-0471-7                     2022;35: 10555.
                                                                  doi: 10.3389/ti.2022.10555
            81.  Kronemberger GS, Miranda GASC, Tavares RSN, et al.
               Recapitulating tumorigenesis  in vitro: Opportunities and   93.  Lee A, Hudson AR, Shiwarski DJ, et al. 3D bioprinting of
               challenges of 3D bioprinting.  Front Bioeng Biotechnol.   collagen to rebuild components of the human heart. Science.
               2021;9: 682498.                                    2019;365(6452):482-487.
               doi: 10.3389/fbioe.2021.682498                     doi: 10.1126/science.aav9051

            Volume 10 Issue 1 (2024)                       141                          https://doi.org/10.36922/ijb.1256
   144   145   146   147   148   149   150   151   152   153   154