Page 149 - IJB-10-1
P. 149
International Journal of Bioprinting Bioprinting organoids for toxicity testing
70. Mao S, Pang Y, Liu T, et al. Bioprinting of in vitro tumor 82. Molander D, Sbirkov Y, Sarafian V. 3D bioprinting as an
models for personalized cancer treatment: A review. emerging standard for cancer modeling and drug testing.
Biofabrication, 2020;12(4):042001. Folia Med (Plovdiv), 2022;64(4):559-565.
doi: 10.1088/1758-5090/ab97c0 doi: 10.3897/folmed.64.e73419
71. Staros R, Michalak A, Rusinek K, et al. Perspectives for 83. Kang Y, Datta P, Shanmughapriya S, et al. 3D bioprinting
3D-bioprinting in modeling of tumor immune evasion. of tumor models for cancer research. ACS Appl Bio Mater.
Cancers (Basel), 2022;14(13):3126. 2020;3(9):5552-5573.
doi: 10.3390/cancers14133126 doi: 10.1021/acsabm.0c00791
72. Jung M, Ghamrawi S, Du EY, et al. Advances in 3D bioprinting 84. Hwang DG, Choi YM, Jang J. 3D bioprinting-based
for cancer biology and precision medicine: From matrix vascularized tissue models mimicking tissue-specific
design to application. Adv Healthc Mater. 2022;11(24): architecture and pathophysiology for in vitro studies. Front
e2200690. Bioeng Biotechnol. 2021;9: 685507.
doi: 10.1002/adhm.202200690 doi: 10.3389/fbioe.2021.685507
73. Ringquist R, Ghoshal D, Jain R, et al. Understanding and 85. Yang H, Yang KH, Narayan RJ, et al. Laser-based bioprinting
improving cellular immunotherapies against cancer: From for multilayer cell patterning in tissue engineering and cancer
cell-manufacturing to tumor-immune models. Adv Drug research. Essays Biochem. 2021;65(3):409-416.
Deliv Rev. 2021;179: 114003. doi: 10.1042/EBC20200093
doi: 10.1016/j.addr.2021.114003
86. Tiwari AP, Thorat ND, Pricl S, et al. Bioink: a 3D-bioprinting
74. Parodi I, Di Lisa D, Pastorino L, et al. 3D bioprinting as a tool for anticancer drug discovery and cancer management.
powerful technique for recreating the tumor microenviron- Drug Discov Today. 2021;26(7):1574-1590.
ment. Gels. 2023;9(6):482. doi: 10.1016/j.drudis.2021.03.010
doi: 10.3390/gels9060482
87. Prashantha K, Krishnappa A, Muthappa M. 3D bioprinting
75. Germain N, Dhayer M, Dekiouk S, et al. Current advances of gastrointestinal cancer models: A comprehensive review
in 3D bioprinting for cancer modeling and personalized on processing, properties, and therapeutic implications.
medicine. Int J Mol Sci. 2022;23(7):3432. Biointerphases. 2023;18(2):020801.
doi: 10.3390/ijms23073432 doi: 10.1116/6.0002372
76. Jubelin C, Muñoz-Garcia J, Griscom L, et al. Three- 88. Palikuqi B, Nguyen DT, Li G, et al., 2020, Adaptable
dimensional in vitro culture models in oncology research. haemodynamic endothelial cells for organogenesis and
Cell Biosci. 2022;12(1):155. tumorigenesis. Nature, 585(7825):426-432.
doi: 10.1186/s13578-022-00887-3 doi: 10.1038/s41586-020-2712-z
77. Wang R, Zhang C, Li D, et al. Tumor-on-a-chip: Perfusable 89. Wang D, Guo Y, Zhu J, et al. Hyaluronic acid methacrylate/
vascular incorporation brings new approach to tumor pancreatic extracellular matrix as a potential 3D printing
metastasis research and drug development. Front Bioeng bioink for constructing islet organoids. Acta Biomater.
Biotechnol. 2022;10: 1057913. 2023;165: 86-101.
doi: 10.3389/fbioe.2022.1057913 doi: 10.1016/j.actbio.2022.06.036
78. Neufeld L, Yeini E, Pozzi S, et al. 3D bioprinted cancer 90. Hakobyan D, Médina C, Dusserre N, et al. Laser-assisted 3D
models: From basic biology to drug development. Nat Rev bioprinting of exocrine pancreas spheroid models for cancer
Cancer. 2022;22(12):679-692. initiation study. Biofabrication. 2020;12(3):035001.
doi: 10.1038/s41568-022-00514-w doi: 10.1088/1758-5090/ab7cb8
79. Visalakshan RM, Lowrey MK, Sousa MGC, et al. 91. Zhuang X, Deng G, Wu X, et al. Recent advances of three-
Opportunities and challenges to engineer 3D models of dimensional bioprinting technology in hepato-pancreato-
tumor-adaptive immune interactions. Front Immunol. biliary cancer models. Front Oncol. 2023;13: 1143600.
2023;14: 1162905. doi: 10.3389/fonc.2023.1143600
doi: 10.3389/fimmu.2023.1162905
92. Pignatelli C, Campo F, Neroni A, et al. Bioengineering the
80. Murphy SV, De Coppi P, Atala A. Opportunities and vascularized endocrine pancreas: A fine-tuned interplay
challenges of translational 3D bioprinting. Nat Biomed Eng. between vascularization, extracellular-matrix-based scaffold
2020;4(4):370-380. architecture, and insulin-producing cells. Transpl Int.
doi: 10.1038/s41551-019-0471-7 2022;35: 10555.
doi: 10.3389/ti.2022.10555
81. Kronemberger GS, Miranda GASC, Tavares RSN, et al.
Recapitulating tumorigenesis in vitro: Opportunities and 93. Lee A, Hudson AR, Shiwarski DJ, et al. 3D bioprinting of
challenges of 3D bioprinting. Front Bioeng Biotechnol. collagen to rebuild components of the human heart. Science.
2021;9: 682498. 2019;365(6452):482-487.
doi: 10.3389/fbioe.2021.682498 doi: 10.1126/science.aav9051
Volume 10 Issue 1 (2024) 141 https://doi.org/10.36922/ijb.1256

