Page 150 - IJB-10-1
P. 150

International Journal of Bioprinting                                 Bioprinting organoids for toxicity testing




            94.  Chaudhary S, Chakraborty E. Hydrogel based tissue      doi: 10.3389/fonc.2019.01443
               engineering and its future applications in personalized disease   104. Banda Sánchez C, Cubo Mateo N, Saldaña L, et al. Selection
               modeling  and  regenerative  therapy.  Beni Suef Univ J Basic
               Appl Sci, 2022;11(1):3.                            and optimization of a bioink based on PANC-1- plasma/
               doi: 10.1186/s43088-021-00172-1                    alginate/methylcellulose for pancreatic tumour modelling.
                                                                  Polymers (Basel). 2023;15(15):3196.
            95.  Hospodiuk-Karwowski M, Chi K, Pritchard J, et al.      doi: 10.3390/polym15153196
               Vascularized pancreas-on-a-chip device produced using
               a printable simulated extracellular matrix.  Biomed Mater.   105. Xue W, Yu SY, Kuss M, et al. 3D bioprinted white adipose
               2022;17(6):065006.                                 model  for  in vitro study  of cancer-associated  cachexia
               doi: 10.1088/1748-605X/ac8c74                      induced  adipose tissue  remodeling.  Biofabrication.
                                                                  2022;14(3).
            96.  Wang Z, Wang L, Li T, et al. 3D bioprinting in cardiac tissue      doi: 10.1088/1758-5090/ac6c4b
               engineering. Theranostics. 2021;11(16):7948-7969.
               doi: 10.7150/thno.61621                         106. De Barros NR, Gomez A, Ermis M, et al. Gelatin methacryloyl
                                                                  and Laponite bioink for 3D bioprinted organotypic tumor
            97.  Brandão LMS, Barbosa MS, Souza RL, et al. Lipase activation   modeling. Biofabrication. 2023;15(4).
               by molecular bioimprinting: The role of interactions      doi: 10.1088/1758-5090/ace0db
               between fatty acids and enzyme active site. Biotechnol Prog.
               2021;37(1):e3064.                               107.  Utama RH, Tan VTG, Tjandra KC, et al. A covalently
               doi: 10.1002/btpr.3064                             crosslinked ink for multimaterials drop-on-demand 3D
                                                                  bioprinting of 3D cell cultures. Macromol Biosci. 2021;21(9):
            98.  Manoukian P, Bijlsma M, Van Laarhoven H. The cellular   e2100125.
               origins of cancer-associated fibroblasts and their opposing      doi: 10.1002/mabi.202100125
               contributions to pancreatic cancer growth. Front Cell Dev
               Biol. 2021;9: 743907.                           108. Freeman S, Calabro S, Williams R, et al. Bioink formulation
               doi: 10.3389/fcell.2021.743907                     and machine learning-empowered bioprinting optimization.
                                                                  Front Bioeng Biotechnol, 2022;10: 913579.
            99.  Bengtsson A,  Andersson  R,  Rahm  J,  et  al. Organoid
               technology for personalized pancreatic cancer therapy. Cell      doi: 10.3389/fbioe.2022.913579
               Oncol (Dordr). 2021;44(2):251-260.              109. Wang J, Cui Z, Maniruzzaman M. Bioprinting: A focus on
               doi: 10.1007/s13402-021-00585-1                    improving bioink printability and cell performance based
            100. Melzer MK, Resheq Y, Navaee F, et al. The application of   on different process parameters.  Int J Pharm. 2023:640:
               pancreatic cancer organoids for novel drug discovery. Expert   123020.
               Opin Drug Discov. 2023;18(4):429-444.              doi: 10.1016/j.ijpharm.2023.123020
               doi: 10.1080/17460441.2023.2194627              110. Kupfer ME, Lin WH, Ravikumar V, et al. In situ expansion,
            101. Sun H, Wang Y, Yang H. Revolutionizing preclinical research   differentiation, and electromechanical coupling of human
               for pancreatic cancer: the potential of 3D bioprinting   cardiac muscle in a 3D bioprinted, chambered organoid.
               technology for personalized therapy.  Hepatobiliary Surg   Circ Res. 2020;127(2):207-224.
               Nutr. 2023;12(4):616-618.                          doi: 10.1161/CIRCRESAHA.119.316155
               doi: 10.21037/hbsn-23-248                       111. Banerjee D, Singh YP, Datta P, et al.  Strategies for 3D
            102. Monteiro  MV,  Ferreira  LP,  Rocha  M,  et  al.  Advances  in   bioprinting of spheroids: A comprehensive review.
               bioengineering pancreatic tumor-stroma physiomimetic   Biomaterials. 2022;291: 121881.
               biomodels. Biomaterials; 2022;287:121653.          doi: 10.1016/j.biomaterials.2022.121881
               doi: 10.1016/j.biomaterials.2022.121653         112. Asim S, Tabish TA, Liaqat U, et al.  Advances in
            103. Swayden M, Soubeyran P, Iovanna J. Upcoming      gelatin bioinks  to  optimize  bioprinted cell functions.
               revolutionary paths in preclinical modeling of pancreatic   Adv Healthc Mater. 2023;12(17):e2203148.
               adenocarcinoma. Front Oncol. 2020;9: 1443.         doi: 10.1002/adhm.202203148
















            Volume 10 Issue 1 (2024)                       142                          https://doi.org/10.36922/ijb.1256
   145   146   147   148   149   150   151   152   153   154   155