Page 150 - IJB-10-1
P. 150
International Journal of Bioprinting Bioprinting organoids for toxicity testing
94. Chaudhary S, Chakraborty E. Hydrogel based tissue doi: 10.3389/fonc.2019.01443
engineering and its future applications in personalized disease 104. Banda Sánchez C, Cubo Mateo N, Saldaña L, et al. Selection
modeling and regenerative therapy. Beni Suef Univ J Basic
Appl Sci, 2022;11(1):3. and optimization of a bioink based on PANC-1- plasma/
doi: 10.1186/s43088-021-00172-1 alginate/methylcellulose for pancreatic tumour modelling.
Polymers (Basel). 2023;15(15):3196.
95. Hospodiuk-Karwowski M, Chi K, Pritchard J, et al. doi: 10.3390/polym15153196
Vascularized pancreas-on-a-chip device produced using
a printable simulated extracellular matrix. Biomed Mater. 105. Xue W, Yu SY, Kuss M, et al. 3D bioprinted white adipose
2022;17(6):065006. model for in vitro study of cancer-associated cachexia
doi: 10.1088/1748-605X/ac8c74 induced adipose tissue remodeling. Biofabrication.
2022;14(3).
96. Wang Z, Wang L, Li T, et al. 3D bioprinting in cardiac tissue doi: 10.1088/1758-5090/ac6c4b
engineering. Theranostics. 2021;11(16):7948-7969.
doi: 10.7150/thno.61621 106. De Barros NR, Gomez A, Ermis M, et al. Gelatin methacryloyl
and Laponite bioink for 3D bioprinted organotypic tumor
97. Brandão LMS, Barbosa MS, Souza RL, et al. Lipase activation modeling. Biofabrication. 2023;15(4).
by molecular bioimprinting: The role of interactions doi: 10.1088/1758-5090/ace0db
between fatty acids and enzyme active site. Biotechnol Prog.
2021;37(1):e3064. 107. Utama RH, Tan VTG, Tjandra KC, et al. A covalently
doi: 10.1002/btpr.3064 crosslinked ink for multimaterials drop-on-demand 3D
bioprinting of 3D cell cultures. Macromol Biosci. 2021;21(9):
98. Manoukian P, Bijlsma M, Van Laarhoven H. The cellular e2100125.
origins of cancer-associated fibroblasts and their opposing doi: 10.1002/mabi.202100125
contributions to pancreatic cancer growth. Front Cell Dev
Biol. 2021;9: 743907. 108. Freeman S, Calabro S, Williams R, et al. Bioink formulation
doi: 10.3389/fcell.2021.743907 and machine learning-empowered bioprinting optimization.
Front Bioeng Biotechnol, 2022;10: 913579.
99. Bengtsson A, Andersson R, Rahm J, et al. Organoid
technology for personalized pancreatic cancer therapy. Cell doi: 10.3389/fbioe.2022.913579
Oncol (Dordr). 2021;44(2):251-260. 109. Wang J, Cui Z, Maniruzzaman M. Bioprinting: A focus on
doi: 10.1007/s13402-021-00585-1 improving bioink printability and cell performance based
100. Melzer MK, Resheq Y, Navaee F, et al. The application of on different process parameters. Int J Pharm. 2023:640:
pancreatic cancer organoids for novel drug discovery. Expert 123020.
Opin Drug Discov. 2023;18(4):429-444. doi: 10.1016/j.ijpharm.2023.123020
doi: 10.1080/17460441.2023.2194627 110. Kupfer ME, Lin WH, Ravikumar V, et al. In situ expansion,
101. Sun H, Wang Y, Yang H. Revolutionizing preclinical research differentiation, and electromechanical coupling of human
for pancreatic cancer: the potential of 3D bioprinting cardiac muscle in a 3D bioprinted, chambered organoid.
technology for personalized therapy. Hepatobiliary Surg Circ Res. 2020;127(2):207-224.
Nutr. 2023;12(4):616-618. doi: 10.1161/CIRCRESAHA.119.316155
doi: 10.21037/hbsn-23-248 111. Banerjee D, Singh YP, Datta P, et al. Strategies for 3D
102. Monteiro MV, Ferreira LP, Rocha M, et al. Advances in bioprinting of spheroids: A comprehensive review.
bioengineering pancreatic tumor-stroma physiomimetic Biomaterials. 2022;291: 121881.
biomodels. Biomaterials; 2022;287:121653. doi: 10.1016/j.biomaterials.2022.121881
doi: 10.1016/j.biomaterials.2022.121653 112. Asim S, Tabish TA, Liaqat U, et al. Advances in
103. Swayden M, Soubeyran P, Iovanna J. Upcoming gelatin bioinks to optimize bioprinted cell functions.
revolutionary paths in preclinical modeling of pancreatic Adv Healthc Mater. 2023;12(17):e2203148.
adenocarcinoma. Front Oncol. 2020;9: 1443. doi: 10.1002/adhm.202203148
Volume 10 Issue 1 (2024) 142 https://doi.org/10.36922/ijb.1256

