Page 262 - IJB-10-1
P. 262

International Journal of Bioprinting                              3D-printed hydrogel with antioxidant activity




            References                                         13.  Palem RR, Kummara MR, Kang TJ. Self-healable and dual-
                                                                  functional guar gum-grafted-polyacrylamidoglycolic  acid-
            1.   Fatimi A, Okoro OV, Podstawczyk D, et al. Natural hydrogel-  based hydrogels with nano-silver for wound dressings.
               based bio-inks for 3D bioprinting in tissue engineering: A   Carbohydr Polym. 2019;223:115074.
               review. Gels. 2022;8(3):179.                       doi: 10.1016/j.carbpol.2019.115074
               doi: 10.3390/gels8030179                        14.  Pugliese R, Gelain F. Characterization of elastic, thermo-
            2.   Nocheseda CJC, Liza FP, Collera AKM, et al. 3D printing   responsive, self-healable  supramolecular  hydrogel made
               of metals using biodegradable cellulose hydrogel inks. Addit   of self-assembly peptides and guar gum.  Mater Des.
               Manuf. 2021;48(Part A):102380.                     2020;186:108370.
               doi: 10.1016/j.addma.2021.102380                   doi: 10.1016/j.matdes.2019.108370
            3.   Hong S, Purushothama B, Song JM. Printing-based assay   15.  Thombare N, Jha U, Mishra S, et al. Guar gum as a promising
               and therapy of antioxidans. Antioxidants. 2020;9(11):1052.  starting material for diverse applications: A review. Int J Biol
               doi: 10.3390/antiox9111052                         Macromol. 2016;88:361–372.
                                                                  doi: 10.1016/j.ijbiomac.2016.04.001
            4.   Cleymand F, Poerio A, Mamanov A, et al. Development
               of novel chitosan / guar gum inks for extrusion-based 3D   16.  Venkatesan J, Kim S, Anil S, (eds.), et al. Guar gum nanoparticles:
               bioprinting: Process, printability and properties. Bioprinting.   A new paradigm in biomedical applications, in Polysaccharide
               2021;21:e00122.                                    Nanoparticles:  Preparation  and  Biomedical  Applications,
               doi: 10.1016/j.bprint.2020.e00122                  Elsevier Inc., Amsterdam, Netherlands. 2022;119–143.
            5.   Dai L, Cheng T, Wang Y, et al. Injectable all-polysaccharide   17.  Pan  X,  Wang  Q,  Ning  D,  et  al.  Ultraflexible  self-healing
               self-assembling hydrogel: a promising scaffold for localized   guar  gum-glycerol  hydrogel  with  injectable,  antifreeze,
               therapeutic proteins. Cellulose. 2019;26:6891–6901.  and strain-sensitive properties.  ACS Biomater Sci Eng.
               doi: 10.1007/s10570-019-02579-7                    2018;4(9):3397−3404.
                                                                  doi: 10.1021/acsbiomaterials.8b00657
            6.   Ee LY, Li SFY. Recent advances in 3D printing of
               nanocellulose: Structure, preparation, and application   18.  Li N, Liu C, Chen W. Facile access to guar gum based
               prospects. Nanoscale Adv. 2021;3(5):1167–1208.     supramolecular  hydrogels  with  rapid  self-healing  ability
               doi: 10.1039/D0NA00408A                            and multistimuli responsive gel−sol transitions. J Agric Food
                                                                  Chem. 2019;67(2):746−752.
            7.   Leppiniemi J, Lahtinen P, Paajanen A, et al. 3D-printable      doi: 10.1021/acs.jafc.8b05130
               bioactivated nanocellulose–alginate hydrogels.  ACS Appl
               Mater. 2017;9(26):21959–21970.                  19.  Buj-Corral I, Bagheri A, Sivatte-Adroer M. Effect of printing
               doi: 10.1021/acsami.7b02756                        parameters on dimensional error, surface roughness and
                                                                  porosity of FFF printed parts with grid structure. Polymers.
            8.   Firmanda A, Syamsu K, Sari YW, et al. 3D printed   2021;13(8):1213.
               cellulose based product applications.  Mater Chem Front.      doi: 10.3390/polym13081213
               2022;6(3):254–279.
               doi: 10.1039/D1QM00390A                         20.  Velásquez-Cock J, Ganán P, Posada P, et al.  Influence of
                                                                  combined  mechanical  treatments  on  the  morphology  and
            9.   Mohan D, Teong ZK, Sajab MS, et al. Intact fibrillated   structure of cellulose nanofibrils: Thermal and mechanical
               3D-printed cellulose  macrofibrils/CaCO3 for  controlled   properties of the resulting films. Ind Crops Prod. 2016;85:1–10.
               drug delivery. Polymers. 2021;13(12):1912.         doi: 10.1016/j.indcrop.2016.02.036
               doi: 10.3390/polym13121912
                                                               21.  Jang  JH,  So  BR,  Yeo  HJ,  et  al.  Preparation of  cellulose
            10.  Xu W, Wang X, Sandler N, et al. Three-dimensional   microfibril (CMF) from  Gelidium amansii and feasibility
               printing of wood-derived biopolymers: A review focused   of CMF as a cosmetic ingredient.  Carbohydr Polym.
               on biomedical applications.  ACS Sustain Chem Eng.   2021;257:117569.
               2018;6(5):5663–5680.                               doi: 10.1016/j.carbpol.2020.117569
               doi: 10.1021/acssuschemeng.7b03924
                                                               22.  Bradford  MM.  A  rapid  and  sensitive  method  for  the
            11. Gao G, Du G, Sun Y, et al. Self-healable, tough, and   quantitation of microgram quantities of protein utilizing
               ultrastretchable nanocomposite hydrogels based on   the principle of protein-dye binding. Anal Biochem. 1976;
               reversible  polyacrylamide/montmorillonite adsorption.   72(1-2):248–254.
               ACS Appl Mater Interfaces. 2015;7(8):5029–5037.     doi: 10.1016/0003-2697(76)90527-3
               doi: 10.1021/acsami.5b00704
                                                               23.  Lu B, Lin F, Jiang X, et al. One-pot assembly of microfibrillated
            12.  Erb RM, Sander JS, Grisch R, et al. Self-shaping composites   cellulose reinforced PVA−borax hydrogels with self-healing
               with programmable bioinspired microstructures.  Nat   and pH-responsive properties.  ACS Sustain Chem  Eng.
               Commun. 2013;4(1):1712.                            2017;5(1):948−956.
               doi: 10.1038/ncomms2666                            doi: 10.1021/acssuschemeng.6b02279


            Volume 10 Issue 1 (2024)                       254                          https://doi.org/10.36922/ijb.0164
   257   258   259   260   261   262   263   264   265   266   267