Page 6 - IJB-2-1
P. 6

A Foreword from the Editor

                         [8]
            taminated tuna . Leong et al. reported a simple and    printing, vol.2(1): 45–52.
            efficient  method for  making 3D nanofibrous scaf-     http://dx.doi.org/10.18063/IJB.2016.01.007
                 [9]
            folds . Finally, Bibb et al. presented a detailed report   6.  Ng W L, Yeong W Y and Naing M W, 2016, Polyelectro-
            on the European ArtiVasc 3D project and discussed      lyte gelatin-chitosan hydrogel optimized for 3D bioprint-
            the successes and lessons that had been learnt [10] .   ing in  skin tissue engineering.  International  Journal of
                                                                   Bioprinting, vol.2(1): 53–62.
            References                                             http://dx.doi.org/10.18063/IJB.2016.01.009
                                                                7.  Wang H, Vijayavenkataraman S, Wu Y, et al., 2016, In-
              1.  An J, Chua K C and Mironov V, 2016, A perspective on
                 4D bioprinting.  International Journal  of Bioprinting,   vestigation of process parameters of electrohydrodynamic
                 vol.2(1): 3–5.                                    jetting for 3D printed PCL fibrous scaffolds with complex
                 http://dx.doi.org/10.18063/IJB.2016.01.003        geometries. International Journal of Bioprinting, vol.2(1):
              2.  Mehrban N, Teoh G Z and Birchall M A, 2016, 3D bio-  63–71.
                 printing  for tissue engineering: Stem cells in hydrogels.   http://dx.doi.org/10.18063/IJB.2016.01.005
                 International Journal of Bioprinting, vol.2(1): 6–19.     8.  Boehm R D, Jaipan P, Yang K-H, et al., 2016, Microste-
                 http://dx.doi.org/10.18063/IJB.2016.01.006        reolithography-fabricated  microneedles  for  fluid  sam-
              3.  Sánchez-Salcedo S, Colilla M, Izquierdo-Barba I, et al.,   pling  of histamine-contaminated  tuna.  International
                 2016, Preventing bacterial adhesion on scaffolds for bone   Journal of Bioprinting, vol.2(1): 72–80.
                 tissue engineering. International Journal of Bioprinting,   http://dx.doi.org/10.18063/IJB.2016.01.010
                 vol.2(1): 20–34.                               9.  Leong W S, Wu S C, Ng K W, et al., 2016, Electrospun
                 http://dx.doi.org/10.18063/IJB.2016.01.008        3D multi-scale fibrous scaffold for enhanced human der-
              4.  Tse C W C, Ng S S, Stringer J, et al., 2016, Utilising in-  mal fibroblasts infiltration. International Journal of Bio-
                 kjet printed paraffin wax for cell patterning applications.   printing, vol.2(1): 81–92.
                 International Journal of Bioprinting, vol.2(1): 35–44.     http://dx.doi.org/10.18063/IJB.2016.01.002
                 http://dx.doi.org/10.18063/IJB.2016.01.001     10.  Bibb R, Nottrodt N and Gillner A, 2016, Artificial vascu-
              5.  Koudan E V, Bulanova E A, Pereira F D A S, et al., 2016,   larized scaffolds for 3D-tissue regeneration — a report of
                 Patterning of tissue spheroids biofabricated from human   the ArtiVasc  3D Project.  International Journal of Bio-
                 fibroblasts on the surface of electrospun polyurethane   printing, vol.2(1): 93–102.
                 matrix using 3D bioprinter. International Journal of Bio-   http://dx.doi.org/10.18063/IJB.2016.01.004




































            2                           International Journal of Bioprinting (2016)–Volume 2, Issue 1
   1   2   3   4   5   6   7   8   9   10   11