Page 161 - IJB-10-2
P. 161

International Journal of Bioprinting                                dECM bioink for in vitro disease modeling




            Acknowledgments                                    4.   Wikswo JP. The relevance and potential roles of
                                                                  microphysiological systems in biology and medicine.  Exp
            We  extend  our appreciation  to  BioRender  (https://  Biol Med. 2014;239(9):1061-1072.
            biorender.com/), with which we used to create schematics      doi: 10.1177/1535370214542068
            used in this paper.
                                                               5.   Shyam R, Reddy LVK, Palaniappan A. Fabrication and
                                                                  characterization techniques of in vitro 3D tissue models. Int
            Funding                                               J Mol Sci. 2023;24(3):1912.
            This work was supported by the Korean Fund for        doi: 10.3390/ijms24031912
            Regenerative Medicine funded by Ministry of Science and   6.   Bae  M,  Yi  H-G,  Jang  J,  Cho  D-W.  Microphysiological
            ICT, and Ministry of Health and Welfare (22A0106L1,   systems for neurodegenerative diseases in central nervous
            Republic of Korea), and was supported by the Alchemist   system. Micromachines. 2020;11(9):855.
            Project (20012378, Development of Meta Soft Organ Module      doi: 10.3390/mi11090855
            Manufacturing Technology without Immunity Rejection and   7.   Brovold M, Almeida JI, Pla-Palacín I,  et al. Naturally-
            Module Assembly Robot System) funded by the Ministry of   derived biomaterials for tissue engineering applications.
            Trade, Industry & Energy (MOTIE, Republic of Korea).  Novel Biomater Regen Med. 2018:421-449.
                                                                  doi: 10.1007/978-981-13-0947-2_23
            Conflict of interest
                                                               8.   Joyce K, Fabra GT, Bozkurt Y, Pandit A. Bioactive potential
            The authors declare no conflicts of interest.         of natural biomaterials: identification, retention and
                                                                  assessment of biological properties. Signal Transduct Target
            Author contributions                                  Ther. 2021;6(1):122.
                                                                  doi: 10.1038/s41392-021-00512-8
            Conceptualization:  Mihyeon Bae, Joeng Ju Kim, Dong-  9.   Groll J, Boland T, Blunk T, et al. Biofabrication: reappraising
               Woo Cho                                            the  definition  of  an  evolving  field.  Biofabrication.
            Writing – original draft: Mihyeon Bae, Joeng Ju Kim   2016;8(1):013001.
            Writing – review & editing: Jongmin Kim, Dong-Woo Cho     doi: 10.1088/1758-5090/8/1/013001

            Ethics approval and consent to participate         10.  Moroni L, Burdick JA, Highley C,  et al. Biofabrication
                                                                  strategies for 3D in vitro models and regenerative medicine.
            Not applicable.                                       Nat Rev Mater. 2018;3(5):21-37.
                                                                  doi: 10.1038/s41578-018-0006-y
            Consent for publication                            11.  Devillard CD, Marquette CA. Vascular tissue engineering:

            Not applicable.                                       challenges and requirements for an ideal large scale blood
                                                                  vessel. Front Bioeng Biotechnol. 2021;9:721843.
            Availability of data                                  doi: 10.3389/fbioe.2021.721843
                                                               12.  Cesare G. Muscle tissue engineering. Nukavarapu SP,
            Not applicable.
                                                                  Freeman JW, Laurencin CT, eds.  Regenerative  Engineering
            References                                            of Musculoskeletal Tissues and Interfaces. Amsterdam,
                                                                  Netherlands: Elsevier; 2015:239-268.
                                                                  doi: 10.1016/C2014-0-02826-2
            1.   Nikolic M, Sustersic T, Filipovic N. In vitro models and on-
               chip systems: biomaterial interaction studies with tissues   13.  Zhang X, Chen X, Hong H, Hu R, Liu J, Liu C. Decellularized
               generated using lung epithelial and liver metabolic cell lines.   extracellular matrix scaffolds: recent trends and emerging
               Front Bioeng Biotechnol. 2018;6:120.               strategies in tissue engineering. Bioact Mater. 2022;10:15-31.
               doi: 10.3389/fbioe.2018.00120                      doi: 10.1016/j.bioactmat.2021.09.014
            2.   Rothbauer M, Rosser JM, Zirath H,  Ertl P. Tomorrow   14.  Kim BS, Kim H, Gao G, Jang J, Cho D-W. Decellularized
               today: organ-on-a-chip advances towards clinically relevant   extracellular matrix: a step towards the next generation
               pharmaceutical and medical in vitro models.  Curr Opin   source  for  bioink  manufacturing.  Biofabrication.
               Biotechnol. 2019;55:81-86.                         2017;9(3):034104.
               doi: 10.1016/j.copbio.2018.08.009                  doi: 10.1088/1758-5090/aa7e98
            3.   Wang YI, Carmona C, Hickman JJ. Multiorgan    15.  Kim BS, Das S, Jang J, Cho D-W. Decellularized extracellular
               microphysiological  systems  for  drug  development:   matrix-based bioinks for engineering tissue-and organ-
               strategies, advances, and challenges.  Adv Healthc Mater.   specific microenvironments.  Chem  Rev. 2020;120(19):
               2018;7(2):1701000.                                 10608-10661.
               doi: 10.1002/adhm.201701000                        doi: 10.1021/acs.chemrev.9b00808


            Volume 10 Issue 2 (2024)                       153                                doi: 10.36922/ijb.1970
   156   157   158   159   160   161   162   163   164   165   166