Page 165 - IJB-10-2
P. 165
International Journal of Bioprinting dECM bioink for in vitro disease modeling
91. Wu L-C, Kuo Y-J, Sun F-W, et al. Optimized decellularization 103. Jang J, Kim TG, Kim BS, Kim S-W, Kwon S-M, Cho
protocol including α-Gal epitope reduction for fabrication D-W. Tailoring mechanical properties of decellularized
of an acellular porcine annulus fibrosus scaffold. Cell Tissue extracellular matrix bioink by vitamin B2-induced photo-
Bank. 2017;18:383-396. crosslinking. Acta Biomater. 2016;33:88-95.
doi: 10.1007/s10561-017-9619-4 doi: 10.1016/j.actbio.2016.01.013
92. Stahl EC, Bonvillain RW, Skillen CD, et al. Evaluation of 104. He W, Wang H, Zhang X, et al. Construction of a
the host immune response to decellularized lung scaffolds decellularized spinal cord matrix/GelMA composite scaffold
derived from α-Gal knockout pigs in a non-human primate and its effects on neuronal differentiation of neural stem
model. Biomaterials. 2018;187:93-104. cells. J Biomater Sci. 2022;33(16):2124-2144.
doi: 10.1016/j.biomaterials.2018.09.038 doi: 10.1080/09205063.2022.2102275
93. Warren CJ, Sawyer SL. Identifying animal viruses in humans. 105. Shin YJ, Shafranek RT, Tsui JH, Walcott J, Nelson A, Kim
Science. 2023;379(6636):982-983. D-H. 3D bioprinting of mechanically tuned bioinks derived
doi: 10.1126/science.ade6985 from cardiac decellularized extracellular matrix. Acta
94. Denner J. Porcine endogenous retroviruses and Biomater. 2021;119:75-88.
xenotransplantation, 2021. Viruses. 2021;13(11):2156. doi: 10.1016/j.actbio.2020.11.006
doi: 10.3390/v13112156 106. Gao G, Park W, Kim BS, et al. Construction of a novel in
95. Naso F, Gandaglia A. Can heart valve decellularization vitro atherosclerotic model from geometry‐tunable artery
be standardized? A review of the parameters used for the equivalents engineered via in‐bath coaxial cell printing. Adv
quality control of decellularization processes. Front Bioeng Funct Mater. 2021;31(10):2008878.
Biotechnol. 2022;10:830899. doi: 10.1002/adfm.202008878
doi: 10.3389/fbioe.2022.830899 107. Rabbani M, Zakian N, Alimoradi N. Contribution of
96. Rocha DN, Ferraz-Nogueira JP, Barrias CC, Relvas JB, Pêgo physical methods in decellularization of animal tissues.
AP. Extracellular environment contribution to astrogliosis— J Med Signals Sens. 2021;11(1):1-11.
lessons learned from a tissue engineered 3D model of the https://doi.org/10.4103/jmss.JMSS_2_20
glial scar. Front Cell Neurosci. 2015;9:377. 108. DeQuach JA, Yuan SH, Goldstein LS, Christman KL.
doi: 10.3389/fncel.2015.00377 Decellularized porcine brain matrix for cell culture
97. Galarza S, Crosby AJ, Pak C, Peyton SR. Control of astrocyte and tissue engineering scaffolds. Tiss Eng Part A. 2011;
quiescence and activation in a synthetic brain hydrogel. Adv 17(21-22):2583-2592.
Healthc Mater. 2020;9(4):1901419. doi: 10.1089/ten.tea.2010.0724
doi: 10.1002/adhm.201901419 109. Gregory E, Baek IH, Ala-Kokko N, et al. Peripheral
98. Kasravi M, Ahmadi A, Babajani A, et al. Immunogenicity of nerve decellularization for in vitro extracellular matrix
decellularized extracellular matrix scaffolds: a bottleneck in hydrogel use: a comparative study. ACS Biomater Sci Eng.
tissue engineering and regenerative medicine. Biomater Res. 2022;8(6):2574-2588.
2023;27(1):1-24. doi: 10.1021/acsbiomaterials.2c00034
doi: 10.1186/s40824-023-00348-z 110. Kim J, Park JY, Kong JS, Lee H, Won JY, Cho D-W.
99. Chakraborty J, Roy S, Ghosh S. Regulation of decellularized Development of 3D printed Bruch’s membrane-mimetic
matrix mediated immune response. Biomater Sci. substance for the maturation of retinal pigment epithelial
2020;8(5):1194-1215. cells. Int J Mol Sci. 2021;22(3):1095.
doi: 10.1039/C9BM01780A doi: 10.3390/ijms22031095
100. Jiang Y, Li R, Han C, et al. Extracellular matrix grafts: from 111. Kundu J, Michaelson A, Talbot K, Baranov P, Young MJ, Carrier
preparation to application. Int J Mol Med. 2021;47(2):463- RL. Decellularized retinal matrix: natural platforms for human
474. retinal progenitor cell culture. Acta Biomater. 2016;31:61-70.
doi: 10.3892/ijmm.2020.4818 doi: 10.1016/j.actbio.2015.11.028
101. Gilpin A, Yang Y. Decellularization strategies for regenerative 112. Lee J, Hong J, Kim W, Kim GH. Bone-derived dECM/
medicine: from processing techniques to applications. alginate bioink for fabricating a 3D cell-laden mesh
Biomed Res Int. 2017;2017:9831534. structure for bone tissue engineering. Carbohydr Polym.
doi: 10.1155/2017/9831534 2020;250:116914.
doi: 10.1016/j.carbpol.2020.116914
102. Basara G, Ozcebe SG, Ellis BW, Zorlutuna P. Tunable
human myocardium derived decellularized extracellular 113. Sun Y, Yan L, Chen S, Pei M. Functionality of decellularized
matrix for 3D bioprinting and cardiac tissue engineering. matrix in cartilage regeneration: a comparison of tissue
Gels. 2021;7(2):70. versus cell sources. Acta Biomater. 2018;74:56-73.
doi: 10.3390/gels7020070 doi: 10.1016/j.actbio.2018.04.048
Volume 10 Issue 2 (2024) 157 doi: 10.36922/ijb.1970

