Page 167 - IJB-10-2
P. 167

International Journal of Bioprinting                                dECM bioink for in vitro disease modeling




            137. Lancaster MA, Renner M, Martin C-A,  et al. Cerebral   150. Potjewyd G, Moxon S, Wang T,  Domingos M, Hooper
               organoids model human brain development and        NM. Tissue engineering 3D neurovascular units: a
               microcephaly. Nature. 2013;501(7467):373-379.      biomaterials and bioprinting perspective. Trends Biotechnol.
               doi: 10.1038/nature12517                           2018;36(4):457-472.
                                                                  doi: 10.1016/j.tibtech.2018.01.003
            138. Saha K, Keung AJ, Irwin EF, et al. Substrate modulus directs
               neural stem cell behavior. Biophys J. 2008;95(9):4426-4438.   151. Mossink B, Verboven AH, van Hugte EJ,  et al. Human
               doi: 10.1529/biophysj.108.132217                   neuronal networks on micro-electrode arrays are a highly
                                                                  robust tool to study disease-specific genotype-phenotype
            139. Yi B, Xu Q, Liu W. An overview of substrate stiffness guided   correlations in vitro. Stem Cell Rep. 2021;16(9):2182-2196.
               cellular response and its applications in tissue regeneration.      doi: 10.1016/j.stemcr.2021.07.001
               Bioact Mater. 2022;15:82-102.
               doi: 10.1016/j.bioactmat.2021.12.005            152. Nabel EG. Cardiovascular disease.  N Engl J Med. 2003;
                                                                  349(1):60-72.
            140. Portenoy RK. Cancer pain: pathophysiology and syndromes.      doi: 10.1056/NEJMra035098
               Lancet. 1992;339(8800):1026-1031.
               doi: 10.1016/0140-6736(92)90545-e               153. Wilkins E, Wilson L, Wickramasinghe K,  et al.  European
                                                                  Cardiovascular Disease Statistics 2017. Brussels, Belgium:
            141. Yi H-G, Jeong YH, Kim Y,  et al. A bioprinted human-  European Heart Network; 2017.
               glioblastoma-on-a-chip for the identification of patient-     https://researchportal.bath.ac.uk/en/publications/
               specific responses to chemoradiotherapy. Nat Biomed Eng.   european-cardiovascular-disease-statistics-2017
               2019;3(7):509-519.
               doi: 10.1038/s41551-019-0363-x                  154. Zhang WJ, Liu W, Cui L, Cao Y. Tissue engineering of blood
                                                                  vessel. J Cell Mol Med. 2007;11(5):945-957.
            142. Park W, Bae M, Hwang M,  Jang J, Cho D-W, Yi      doi: 10.1111/j.1582-4934.2007.00099.x
               H-G. 3D cell-printed hypoxic cancer-on-a-chip for
               recapitulating pathologic progression of solid cancer. JoVE.   155. Abramson  DI.  Blood Vessels and Lymphatics. Cambridge,
               2021;(167):e61945.                                 Massachusetts, USA: Elsevier; 2013.
               doi: 10.3791/61945                                 doi: 10.1016/C2013-0-12391-4
                                                               156. Bogseth A, Ramirez A, Vaughan E, Maisel K. In vitro models
            143. Slanzi A, Iannoto G, Rossi B, Zenaro E, Constantin G. In   of blood and lymphatic vessels—connecting tissues and
               vitro models of neurodegenerative diseases. Front Cell Dev   immunity. Adv Biol. 2023;7(5):2200041.
               Biol. 2020;8:328.                                  doi: 10.1002/adbi.202200041
               doi: 10.3389/fcell.2020.00328
                                                               157. Abdelsayed G, Ali D, Malone A, et al. 2D and 3D in-vitro
            144. Cetin S, Knez D, Gobec S, Kos J, Pišlar A. Cell models for   models for mimicking cardiac physiology.  Appl Eng Sci.
               Alzheimer’s and Parkinson’s disease: at the interface of biology   2022;12:100115.
               and drug discovery. Biomed Pharmacother. 2022;149:112924.      doi: 10.1016/j.apples.2022.100115
               doi: 10.1016/j.biopha.2022.112924
                                                               158. Ferri N, Siegl P, Corsini A,  Herrmann J, Lerman A,
            145. Osaki T, Shin Y, Sivathanu V, Campisi M, Kamm RD. In   Benghozi R. Drug attrition during pre-clinical and clinical
               vitro microfluidic models for neurodegenerative disorders.   development:  understanding  and  managing  drug-induced
               Adv Healthc Mater. 2018;7(2):1700489.              cardiotoxicity. Pharmacol Ther. 2013;138(3):470-484.
               doi: 10.1002/adhm.201700489                        doi: 10.1016/j.pharmthera.2013.03.005
            146. Kong  JS, Huang X,  Choi YJ,  et al. Promoting long‐term   159. Ho D, Zhao X, Gao S, Hong C, Vatner DE, Vatner SF. Heart
               cultivation of motor neurons for 3D neuromuscular junction   rate and electrocardiography monitoring in mice.  Curr
               formation of 3D in vitro using central‐nervous‐tissue‐  Protoc Mouse Biol. 2011;1(1):123-139.
               derived bioink. Adv Healthc Mater. 2021;10(18):2100581.      doi: 10.1002/9780470942390.mo100159
               doi: 10.1002/adhm.202100581
                                                               160. Wolfe JT, He W, Kim M-S, et al. 3D-bioprinting of patient-
            147. Kim W, Kim G. Bioprinting 3D muscle tissue supplemented   derived cardiac tissue models for studying congenital heart
               with  endothelial-spheroids  for neuromuscular  junction   disease. Front Cardiovasc Med. 2023;10:1162731.
               model. Appl Phys Rev. 2023;10(3):031410.           doi: 10.3389/fcvm.2023.1162731
               doi: 10.1063/5.0152924
                                                               161. Faulkner-Jones A, Zamora V, Hortigon-Vinagre MP,  et
            148. Lee SJ, Esworthy T, Stake S, et al. Advances in 3D bioprinting   al. A bioprinted heart-on-a-chip with human pluripotent
               for neural tissue engineering. Adv Biosyst. 2018;2(4):1700213.   stem cell-derived cardiomyocytes for drug evaluation.
               doi: 10.1002/adbi.201700213                        Bioengineering. 2022;9(1):32.
                                                                  doi: 10.3390/bioengineering9010032
            149. Daneman R, Prat A. The blood–brain barrier. Cold Spring
               Harb Perspect Biol. 2015;7(1):a020412.          162. Das S, Kim S-W, Choi Y-J, et al. Decellularized extracellular
               doi: 10.1101/cshperspect.a020412                   matrix bioinks and the external stimuli to enhance cardiac


            Volume 10 Issue 2 (2024)                       159                                doi: 10.36922/ijb.1970
   162   163   164   165   166   167   168   169   170   171   172