Page 168 - IJB-10-2
P. 168

International Journal of Bioprinting                                dECM bioink for in vitro disease modeling




               tissue development in vitro. Acta Biomater. 2019;95:188-200.   176. Wisse E, De Zanger R, Charels K,  van der Smissen P,
               doi: 10.1016/j.actbio.2019.04.026                  McCuskey RS. The liver sieve: considerations concerning
                                                                  the structure and function of endothelial fenestrae,
            163. Min S, Cho S-W. Engineered human cardiac tissues for
               modeling heart diseases. BMB Rep. 2023;56(1):32.   the sinusoidal wall and the space of Disse.  Hepatology.
               doi: 10.5483/BMBRep.2022-0185                      1985;5(4):683-692.
                                                                  doi: 10.1002/hep.1840050427
            164. Eng G, Lee BW, Protas L, et al. Autonomous beating rate   177. Berger DR, Ware BR, Davidson MD, Allsup SR, Khetani SR.
               adaptation in human stem cell-derived cardiomyocytes. Nat   Enhancing the functional maturity of induced pluripotent
               Commun. 2016;7(1):10312.                           stem cell–derived human hepatocytes by controlled
               doi: 10.1038/ncomms10312
                                                                  presentation of cell–cell interactions in vitro.  Hepatology.
            165. Ronaldson-Bouchard K, Ma SP, Yeager K, et al. Advanced   2015;61(4):1370-1381.
               maturation of human cardiac tissue grown from pluripotent      doi: 10.1002/hep.27621
               stem cells. Nature. 2018;556(7700):239-243.     178. Petronis S, Eckert K-L, Gold J,  Wintermantel E.
               doi: 10.1038/s41586-018-0016-3                     Microstructuring ceramic scaffolds for hepatocyte cell
            166. Lasli S, Kim HJ, Lee K,  et al.  A human liver‐on‐a‐chip   culture. J Mater Sci: Mater Med. 2001;12:523-528.
               platform for modeling nonalcoholic fatty liver disease. Adv      doi: 10.1023/A:1011219729687
               Biosyst. 2019;3(8):1900104.                     179. Rennert K, Steinborn S, Gröger M, et al. A microfluidically
               doi: 10.1002/adbi.201900104                        perfused three dimensional human liver model. Biomaterials.
            167. Ozougwu JC. Physiology of the liver. Int J Res Pharm Biosci.   2015;71:119-131.
               2017;4(8):13-24.                                   doi: 10.1016/j.biomaterials.2015.08.043
            168. Bellentani S. The epidemiology of non‐alcoholic fatty liver   180. Yamada M, Utoh R, Ohashi K, et al. Controlled formation
               disease. Liver Int. 2017;37:81-84.                 of heterotypic hepatic micro-organoids in anisotropic
               doi: 10.1111/liv.13299                             hydrogel microfibers for long-term preservation of
                                                                  liver-specific  functions.  Biomaterials.  2012;33(33):
            169. Friedman  SL. Liver fibrosis–from bench to bedside.    8304-8315.
               J Hepatol. 2003;38:38-53.                          doi: 10.1016/j.biomaterials.2012.07.068
               doi: 10.1016/S0168-8278(02)00429-4
                                                               181. Lee H, Chae S, Kim JY, et al. Cell-printed 3D liver-on-a-chip
            170. Border WA, Noble NA. Transforming growth factor β in   possessing a liver microenvironment and biliary system.
               tissue fibrosis. N Engl J Med. 1994;331(19):1286-1292.   Biofabrication. 2019;11(2):025001.
               doi: 10.1056/NEJM199411103311907                   doi: 10.1088/1758-5090/aaf9fa
            171.  Yanni SB, Augustijns PF, Benjamin DK, Brouwer KLR, Thakker   182. Carvalho  V,  Gonçalves  I,  Lage  T,  et  al.  3D  printing
               DR,  Annaert  PP.  In vitro investigation  of the hepatobiliary   techniques and their applications to organ-on-a-
               disposition mechanisms of the antifungal agent micafungin in   chip platforms: a systematic review.  Sensors. 2021;
               humans and rats. Drug Metab Dispos. 2010;38(10):1848-1856.   21(9):3304.
               doi: 10.1124/dmd.110.033811                        doi: 10.3390/s21093304
            172. LeCluyse  EL,  Audus  KL,  Hochman  JH.  Formation  of   183. Mazzocchi A, Soker S, Skardal A. 3D bioprinting for high-
               extensive canalicular networks by rat hepatocytes cultured   throughput screening: drug screening, disease modeling,
               in collagen-sandwich configuration.  Am J Physiol: Cell   and precision medicine  applications.  Appl Phys Rev.
               Physiol. 1994;266(6):C1764-C1774.                  2019;6(1):011302.
               doi: 10.1152/ajpcell.1994.266.6.C1764              doi: 10.1063/1.5056188
            173. De Graaf IA, Olinga P, De Jager MH, et al. Preparation and   184. Kang HK, Sarsenova M, Kim D-H, et al. Establishing a 3D in
               incubation of precision-cut liver and intestinal slices for   vitro hepatic model mimicking physiologically relevant to in
               application in drug metabolism and toxicity studies.  Nat.   vivo state. Cells. 2021;10(5):1268.
               Protoc. 2010;5(9):1540-1551.                       doi: 10.3390/cells10051268
               doi: 10.1038/nprot.2010.111
                                                               185. Lee  H,  Han  W,  Kim  H,  et  al.  Development  of  liver
            174. Du Y, Li N, Yang H,  et al. Mimicking liver sinusoidal   decellularized extracellular matrix bioink for three-
               structures and functions using a 3D-configured microfluidic   dimensional cell printing-based liver tissue engineering.
               chip. Lab Chip. 2017;17(5):782-794.                Biomacromolecules. 2017;18(4):1229-1237.
               doi: 10.1039/C6LC01374K                            doi: 10.1021/acs.biomac.6b01908
            175. Vollmar B, Menger MD. The hepatic microcirculation:   186. Lee  H,  Kim  J,  Choi  Y,  Cho  D-W.  Application  of  gelatin
               mechanistic contributions and therapeutic targets in liver   bioinks and cell-printing technology to enhance cell delivery
               injury and repair. Physiol Rev. 2009;89(4):1269-1339.   capability for 3D liver fibrosis-on-a-chip development. ACS
               doi: 10.1152/physrev.00027.2008                    Biomater Sci Eng. 2020;6(4):2469-2477.


            Volume 10 Issue 2 (2024)                       160                                doi: 10.36922/ijb.1970
   163   164   165   166   167   168   169   170   171   172   173