Page 168 - IJB-10-2
P. 168
International Journal of Bioprinting dECM bioink for in vitro disease modeling
tissue development in vitro. Acta Biomater. 2019;95:188-200. 176. Wisse E, De Zanger R, Charels K, van der Smissen P,
doi: 10.1016/j.actbio.2019.04.026 McCuskey RS. The liver sieve: considerations concerning
the structure and function of endothelial fenestrae,
163. Min S, Cho S-W. Engineered human cardiac tissues for
modeling heart diseases. BMB Rep. 2023;56(1):32. the sinusoidal wall and the space of Disse. Hepatology.
doi: 10.5483/BMBRep.2022-0185 1985;5(4):683-692.
doi: 10.1002/hep.1840050427
164. Eng G, Lee BW, Protas L, et al. Autonomous beating rate 177. Berger DR, Ware BR, Davidson MD, Allsup SR, Khetani SR.
adaptation in human stem cell-derived cardiomyocytes. Nat Enhancing the functional maturity of induced pluripotent
Commun. 2016;7(1):10312. stem cell–derived human hepatocytes by controlled
doi: 10.1038/ncomms10312
presentation of cell–cell interactions in vitro. Hepatology.
165. Ronaldson-Bouchard K, Ma SP, Yeager K, et al. Advanced 2015;61(4):1370-1381.
maturation of human cardiac tissue grown from pluripotent doi: 10.1002/hep.27621
stem cells. Nature. 2018;556(7700):239-243. 178. Petronis S, Eckert K-L, Gold J, Wintermantel E.
doi: 10.1038/s41586-018-0016-3 Microstructuring ceramic scaffolds for hepatocyte cell
166. Lasli S, Kim HJ, Lee K, et al. A human liver‐on‐a‐chip culture. J Mater Sci: Mater Med. 2001;12:523-528.
platform for modeling nonalcoholic fatty liver disease. Adv doi: 10.1023/A:1011219729687
Biosyst. 2019;3(8):1900104. 179. Rennert K, Steinborn S, Gröger M, et al. A microfluidically
doi: 10.1002/adbi.201900104 perfused three dimensional human liver model. Biomaterials.
167. Ozougwu JC. Physiology of the liver. Int J Res Pharm Biosci. 2015;71:119-131.
2017;4(8):13-24. doi: 10.1016/j.biomaterials.2015.08.043
168. Bellentani S. The epidemiology of non‐alcoholic fatty liver 180. Yamada M, Utoh R, Ohashi K, et al. Controlled formation
disease. Liver Int. 2017;37:81-84. of heterotypic hepatic micro-organoids in anisotropic
doi: 10.1111/liv.13299 hydrogel microfibers for long-term preservation of
liver-specific functions. Biomaterials. 2012;33(33):
169. Friedman SL. Liver fibrosis–from bench to bedside. 8304-8315.
J Hepatol. 2003;38:38-53. doi: 10.1016/j.biomaterials.2012.07.068
doi: 10.1016/S0168-8278(02)00429-4
181. Lee H, Chae S, Kim JY, et al. Cell-printed 3D liver-on-a-chip
170. Border WA, Noble NA. Transforming growth factor β in possessing a liver microenvironment and biliary system.
tissue fibrosis. N Engl J Med. 1994;331(19):1286-1292. Biofabrication. 2019;11(2):025001.
doi: 10.1056/NEJM199411103311907 doi: 10.1088/1758-5090/aaf9fa
171. Yanni SB, Augustijns PF, Benjamin DK, Brouwer KLR, Thakker 182. Carvalho V, Gonçalves I, Lage T, et al. 3D printing
DR, Annaert PP. In vitro investigation of the hepatobiliary techniques and their applications to organ-on-a-
disposition mechanisms of the antifungal agent micafungin in chip platforms: a systematic review. Sensors. 2021;
humans and rats. Drug Metab Dispos. 2010;38(10):1848-1856. 21(9):3304.
doi: 10.1124/dmd.110.033811 doi: 10.3390/s21093304
172. LeCluyse EL, Audus KL, Hochman JH. Formation of 183. Mazzocchi A, Soker S, Skardal A. 3D bioprinting for high-
extensive canalicular networks by rat hepatocytes cultured throughput screening: drug screening, disease modeling,
in collagen-sandwich configuration. Am J Physiol: Cell and precision medicine applications. Appl Phys Rev.
Physiol. 1994;266(6):C1764-C1774. 2019;6(1):011302.
doi: 10.1152/ajpcell.1994.266.6.C1764 doi: 10.1063/1.5056188
173. De Graaf IA, Olinga P, De Jager MH, et al. Preparation and 184. Kang HK, Sarsenova M, Kim D-H, et al. Establishing a 3D in
incubation of precision-cut liver and intestinal slices for vitro hepatic model mimicking physiologically relevant to in
application in drug metabolism and toxicity studies. Nat. vivo state. Cells. 2021;10(5):1268.
Protoc. 2010;5(9):1540-1551. doi: 10.3390/cells10051268
doi: 10.1038/nprot.2010.111
185. Lee H, Han W, Kim H, et al. Development of liver
174. Du Y, Li N, Yang H, et al. Mimicking liver sinusoidal decellularized extracellular matrix bioink for three-
structures and functions using a 3D-configured microfluidic dimensional cell printing-based liver tissue engineering.
chip. Lab Chip. 2017;17(5):782-794. Biomacromolecules. 2017;18(4):1229-1237.
doi: 10.1039/C6LC01374K doi: 10.1021/acs.biomac.6b01908
175. Vollmar B, Menger MD. The hepatic microcirculation: 186. Lee H, Kim J, Choi Y, Cho D-W. Application of gelatin
mechanistic contributions and therapeutic targets in liver bioinks and cell-printing technology to enhance cell delivery
injury and repair. Physiol Rev. 2009;89(4):1269-1339. capability for 3D liver fibrosis-on-a-chip development. ACS
doi: 10.1152/physrev.00027.2008 Biomater Sci Eng. 2020;6(4):2469-2477.
Volume 10 Issue 2 (2024) 160 doi: 10.36922/ijb.1970

