Page 166 - IJB-10-2
P. 166

International Journal of Bioprinting                                dECM bioink for in vitro disease modeling




            114. Gilbert TW, Sellaro TL, Badylak SF. Decellularization of   of fibroblasts into therapeutic neurons.  Nat Biomed Eng.
               tissues and organs. Biomaterials. 2006;27(19):3675-3683.  2018;2(7):522-539.
               doi: 10.1016/j.biomaterials.2006.02.014            doi: 10.1038/s41551-018-0260-8
            115. Neishabouri A, Soltani Khaboushan A, Daghigh F,   126. Kim BS, Kwon YW, Kong J-S, et al. 3D cell printing of in
               Kajbafzadeh A-M, Zolbin MM. Decellularization in   vitro stabilized skin model and in vivo pre-vascularized skin
               tissue engineering and regenerative medicine: evaluation,   patch using tissue-specific extracellular matrix bioink: a step
               modification, and application methods.  Front Bioeng   towards advanced skin tissue engineering.  Biomaterials.
               Biotechnol. 2022;10:805299.                        2018;168:38-53.
               doi: 10.3389/fbioe.2022.805299                     doi: 10.1016/j.biomaterials.2018.03.040
            116. Ketchedjian A, Jones AL, Krueger P, et al. Recellularization   127. Byron A, Humphries JD, Humphries MJ. Defining the
               of decellularized allograft scaffolds in ovine great vessel   extracellular matrix using proteomics.  Int J Exp Pathol.
               reconstructions. Ann Thorac Surg. 2005;79(3):888-896.   2013;94(2):75-92.
               doi: 10.1016/j.athoracsur.2004.09.033              doi: 10.1111/iep.12011
            117. White LJ, Taylor AJ, Faulk DM, et al. The impact of detergents   128. Mi H, Muruganujan A, Thomas PD. PANTHER in 2013:
               on the tissue decellularization process: a ToF-SIMS study.   modeling  the  evolution  of  gene  function,  and  other  gene
               Acta Biomater. 2017;50:207-219.                    attributes, in the context of phylogenetic trees. Nucleic Acids
               doi: 10.1016/j.actbio.2016.12.033                  Res. 2012;41(D1):D377-D386.
                                                                  doi: 10.1093/nar/gks1118
            118. Pellegata AF, Asnaghi M, Stefani I,  et al. Detergent-
               enzymatic decellularization of swine blood vessels: insight   129. Shao X, Taha IN, Clauser KR, Gao YT, Naba A. MatrisomeDB:
               on mechanical properties for vascular tissue engineering.   the ECM-protein knowledge database.  Nucleic Acids Res.
               Biomed Res Int. 2013;2013:918753.                  2020;48(D1):D1136-D1144.
               doi: 10.1155/2013/918753                           doi: 10.1093/nar/gkz849
            119. Fernández-Pérez J, Ahearne M. The impact of   130. Chen Y-W, Lin Y-H, Lin T-L,  Lee K-XA, Yu M-H, Shie
               decellularization methods on extracellular matrix derived   M-Y.3D-biofabricated chondrocyte-laden decellularized
               hydrogels. Sci Rep. 2019;9(1):14933.               extracellular matrix-contained gelatin methacrylate auxetic
               doi: 10.1038/s41598-019-49575-2                    scaffolds under cyclic tensile stimulation for cartilage
                                                                  regeneration. Biofabrication. 2023;15(4):045007.
            120. Yang B, Zhang Y, Zhou L, et al. Development of a porcine
               bladder acellular matrix with well-preserved extracellular      doi: 10.1088/1758-5090/ace5e1
               bioactive factors for tissue engineering. Tissue Eng Part C.   131. Simsa R, Rothenbücher T, Gürbüz H, et al. Brain organoid
               2010;16(5):1201-1211.                              formation on decellularized porcine brain ECM hydrogels.
               doi: 10.1089/ten.tec.2009.0311                     PLoS One. 2021;16(1):e0245685.
                                                                  doi: 10.1371/journal.pone.0245685
            121. Poornejad N, Schaumann LB, Buckmiller EM,  et al.
               The impact of decellularization agents on renal tissue   132. Ijima H, Nakamura S, Bual R,  Shirakigawa N, Tanoue
               extracellular matrix.  J Biomater Appl. 2016;31(4):   S. Physical properties of the extracellular matrix of
               521-533.                                           decellularized porcine liver. Gels. 2018;4(2):39.
               doi: 10.1177/0885328216656099                      doi: 10.3390/gels4020039
            122. Choi JS, Kim BS, Kim JY, et al. Decellularized extracellular   133.  Goh S-K, Bertera S, Olsen P,  et al. Perfusion-decellularized
               matrix derived from human adipose tissue as a potential   pancreas as a natural 3D scaffold for pancreatic tissue and whole
               scaffold for allograft tissue engineering. J Biomed Mater Res   organ engineering. Biomaterials. 2013;34(28):6760-6772.
               Part A. 2011;97(3):292-299.                        doi: 10.1016/j.biomaterials.2013.05.066
               doi: 10.1002/jbm.a.33056
                                                               134. Mironov V, Visconti RP, Kasyanov V, Forgacs G, Drake CJ,
            123. Narciso M, Otero J, Navajas D, Farré R, Almendros I, Gavara   Markwald RR. Organ printing: tissue spheroids as building
               N. Image-based method to quantify decellularization of   blocks. Biomaterials. 2009;30(12):2164-2174.
               tissue sections. Int J Mol Sci. 2021;22(16):8399.      doi: 10.1016/j.biomaterials.2008.12.084
               doi: 10.3390/ijms22168399
                                                               135. Chen X, Zhang YS, Zhang X,  Liu C. Organ-on-a-chip
            124. Dimou Z, Michalopoulos E, Katsimpoulas M,  et al.   platforms for accelerating the evaluation of nanomedicine.
               Evaluation of a decellularization protocol for the   Bioact Mater. 2021;6(4):1012-1027.
               development of a decellularized tracheal scaffold. Anticancer      doi: 10.1016/j.bioactmat.2020.09.022
               Res. 2019;39(1):145-150.                        136. Brodal  P.  The Central Nervous System: Structure and
               doi: 10.21873/anticanres.13090
                                                                  Function. Oxford, England: Oxford University Press; 2004.
            125. Jin Y, Lee JS, Kim J,  et al. Three-dimensional brain-like      https://global.oup.com/academic/product/the-central-
               microenvironments  facilitate  the direct reprogramming   nervous-system-9780190228958?cc=kr&lang=en&


            Volume 10 Issue 2 (2024)                       158                                doi: 10.36922/ijb.1970
   161   162   163   164   165   166   167   168   169   170   171