Page 169 - IJB-10-2
P. 169
International Journal of Bioprinting dECM bioink for in vitro disease modeling
doi: 10.1021/acsbiomaterials.9b01735 doi: 10.1001/jama.283.2.235
187. Taymour R, Kilian D, Ahlfeld T, Gelinsky M, Lode A. 200. Cidem A, Bradbury P, Traini D, Ong HX. Modifying
3D bioprinting of hepatocytes: core–shell structured co- and integrating in vitro and ex vivo respiratory models
cultures with fibroblasts for enhanced functionality. Sci Rep. for inhalation drug screening. Front Bioeng Biotechnol.
2021;11(1):5130. 2020;8:581995.
doi: 10.1038/s41598-021-84384-6 doi: 10.3389/fbioe.2020.581995
188. Wang T, Du Z, Zhu F, et al. Comorbidities and multi- 201. Baldassi D, Gabold B, Merkel OM. Air−liquid Interface
organ injuries in the treatment of COVID-19. Lancet. cultures of the healthy and diseased human respiratory
2020;395(10228):e52. tract: promises, challenges, and future directions. Adv
doi: 10.1016/S0140-6736(20)30558-4 Nanobiomed Res. 2021;1(6):2000111.
doi: 10.1002/anbr.202000111
189. Sahlman P, Nissinen M, Puukka P, et al. Genetic and lifestyle
risk factors for advanced liver disease among men and 202. Zheng F, Fu F, Cheng Y, Wang C, Zhao Y, Gu Z. Organ‐on‐a‐
women. J Gastroenterol Hepatol. 2020;35(2):291-298. chip systems: microengineering to biomimic living systems.
doi: 10.1111/jgh.14770 Small. 2016;12(17):2253-2282.
doi: 10.1002/smll.201503208
190. Yang H, Sun L, Pang Y, et al. Three-dimensional bioprinted
hepatorganoids prolong survival of mice with liver failure. 203. Horváth L, Umehara Y, Jud C, Blank F, Petri-Fink A, Rothen-
Gut. 2021;70(3):567-574. Rutishauser B. Engineering an in vitro air-blood barrier by
doi: 10.1136/gutjnl-2019-319960 3D bioprinting. Sci Rep. 2015;5(1):7974.
doi: 10.1038/srep07974
191. Jin B, Liu Y, Du S, Sang X, Yang H. Current trends and
research topics regarding liver 3D bioprinting: a bibliometric 204. Osório LA, Silva E, Mackay RE. A review of biomaterials and
analysis research. Front Cell Dev Biol. 2022;10:1047524. scaffold fabrication for organ-on-a-chip (OOAC) systems.
doi: 10.3389/fcell.2022.1047524 Bioengineering. 2021;8(8):113.
doi: 10.3390/bioengineering8080113
192. Deng J, Wei W, Chen Z, et al. Engineered liver-on-a-chip
platform to mimic liver functions and its biomedical 205. Humayun M, Chow C-W, Young EW. Microfluidic lung
applications: a review. Micromachines. 2019;10(10):676. airway-on-a-chip with arrayable suspended gels for studying
doi: 10.3390/mi10100676 epithelial and smooth muscle cell interactions. Lab Chip.
2018;18(9):1298-1309.
193. Shinozawa T, Kimura M, Cai Y, et al. High-fidelity drug-
induced liver injury screen using human pluripotent stem cell– doi: 10.1039/C7LC01357D
derived organoids. Gastroenterology. 2021;160(3):831-846.e10. 206. Benam K H, Villenave R, Lucchesi C, et al. Small airway-
doi: 10.1053/j.gastro.2020.10.002 on-a-chip enables analysis of human lung inflammation
and drug responses in vitro. Nat Methods. 2016;13(2):
194. Man WH, de Steenhuijsen Piters WA, Bogaert D. The 151-157.
microbiota of the respiratory tract: gatekeeper to respiratory doi: 10.1038/nmeth.3697
health. Nat Rev Microbiol. 2017;15(5):259-270.
doi: 10.1038/nrmicro.2017.14 207. Sellgren KL, Butala EJ, Gilmour BP, Randell SH, Grego S.
A biomimetic multicellular model of the airways using
195. Comroe JH. The lung. Sci Am. 1966;214(2):56-71.
https://jstor.org/stable/24931268 primary human cells. Lab Chip. 2014;14(17):3349-3358.
doi: 10.1039/C4LC00552J
196. Mccracken Jr GH. Diagnosis and management of pneumonia 208. Nalayanda DD, Puleo C, Fulton WB, Sharpe LM, Wang T-H,
in children. Pediatr Infect Dis J. 2000;19(9):924-928. Abdullah F. An open-access microfluidic model for lung-
doi: 10.1097/00006454-200009000-00036
specific functional studies at an air-liquid interface. Biomed
197. Bateman ED, Reddel HK, van Zyl-Smit RN, Agusti A. Microdevices. 2009;11:1081-1089.
The asthma–COPD overlap syndrome: towards a revised doi: 10.1007/s10544-009-9325-5
taxonomy of chronic airways diseases? Lancet Respir Med. 209. Douville NJ, Zamankhan P, Tung Y-C, et al. Combination of
2015;3(9):719-728.
doi: 10.1016/S2213-2600(15)00254-4 fluid and solid mechanical stresses contribute to cell death
and detachment in a microfluidic alveolar model. Lab Chip.
198. Flume PA, Van Devanter DR. State of progress in treating 2011;11(4):609-619.
cystic fibrosis respiratory disease. BMC Med. 2012;10(1):88. doi: 10.1039/C0LC00251H
doi: 10.1186/1741-7015-10-88
210. Huh D, Matthews BD, Mammoto A, Montoya-Zavala
199. Antonelli M, Conti G, Bufi M, et al. Noninvasive ventilation M, Hsin HY, Ingber DE. Reconstituting organ-level
for treatment of acute respiratory failure in patients lung functions on a chip. Science. 2010;328(5986):
undergoing solid organ transplantation: a randomized trial. 1662-1668.
JAMA. 2000;283(2):235-241. doi: 10.1126/science.1188302
Volume 10 Issue 2 (2024) 161 doi: 10.36922/ijb.1970

