Page 169 - IJB-10-2
P. 169

International Journal of Bioprinting                                dECM bioink for in vitro disease modeling




               doi: 10.1021/acsbiomaterials.9b01735               doi: 10.1001/jama.283.2.235
            187. Taymour R, Kilian D, Ahlfeld T,  Gelinsky M, Lode A.   200. Cidem A, Bradbury P, Traini D,  Ong HX. Modifying
               3D bioprinting of hepatocytes: core–shell structured co-  and integrating in vitro and ex vivo respiratory models
               cultures with fibroblasts for enhanced functionality. Sci Rep.   for inhalation drug screening.  Front  Bioeng Biotechnol.
               2021;11(1):5130.                                   2020;8:581995.
               doi: 10.1038/s41598-021-84384-6                    doi: 10.3389/fbioe.2020.581995
            188. Wang T, Du Z, Zhu F,  et al. Comorbidities and multi-  201. Baldassi  D, Gabold B, Merkel OM. Air−liquid Interface
               organ  injuries  in  the  treatment  of  COVID-19.  Lancet.   cultures  of  the  healthy  and  diseased  human  respiratory
               2020;395(10228):e52.                               tract: promises, challenges, and future directions.  Adv
               doi: 10.1016/S0140-6736(20)30558-4                 Nanobiomed Res. 2021;1(6):2000111.
                                                                  doi: 10.1002/anbr.202000111
            189. Sahlman P, Nissinen M, Puukka P, et al. Genetic and lifestyle
               risk factors for advanced liver disease among men and   202. Zheng F, Fu F, Cheng Y, Wang C, Zhao Y, Gu Z. Organ‐on‐a‐
               women. J Gastroenterol Hepatol. 2020;35(2):291-298.   chip systems: microengineering to biomimic living systems.
               doi: 10.1111/jgh.14770                             Small. 2016;12(17):2253-2282.
                                                                  doi: 10.1002/smll.201503208
            190. Yang H, Sun L, Pang Y, et al. Three-dimensional bioprinted
               hepatorganoids prolong survival of mice with liver failure.   203. Horváth L, Umehara Y, Jud C, Blank F, Petri-Fink A, Rothen-
               Gut. 2021;70(3):567-574.                           Rutishauser B. Engineering an in vitro air-blood barrier by
               doi: 10.1136/gutjnl-2019-319960                    3D bioprinting. Sci Rep. 2015;5(1):7974.
                                                                  doi: 10.1038/srep07974
            191. Jin B, Liu Y, Du S,  Sang X, Yang H. Current trends and
               research topics regarding liver 3D bioprinting: a bibliometric   204. Osório LA, Silva E, Mackay RE. A review of biomaterials and
               analysis research. Front Cell Dev Biol. 2022;10:1047524.   scaffold fabrication for organ-on-a-chip (OOAC) systems.
               doi: 10.3389/fcell.2022.1047524                    Bioengineering. 2021;8(8):113.
                                                                  doi: 10.3390/bioengineering8080113
            192. Deng J, Wei W, Chen Z, et al. Engineered liver-on-a-chip
               platform  to  mimic  liver  functions  and  its  biomedical   205. Humayun M,  Chow C-W, Young EW. Microfluidic  lung
               applications: a review. Micromachines. 2019;10(10):676.   airway-on-a-chip with arrayable suspended gels for studying
               doi: 10.3390/mi10100676                            epithelial and smooth muscle cell interactions.  Lab Chip.
                                                                  2018;18(9):1298-1309.
            193.  Shinozawa T, Kimura M, Cai Y,  et al. High-fidelity drug-
               induced liver injury screen using human pluripotent stem cell–     doi: 10.1039/C7LC01357D
               derived organoids. Gastroenterology. 2021;160(3):831-846.e10.   206. Benam K H, Villenave R, Lucchesi C, et al. Small airway-
               doi: 10.1053/j.gastro.2020.10.002                  on-a-chip  enables  analysis  of  human  lung  inflammation
                                                                  and drug responses in vitro.  Nat  Methods. 2016;13(2):
            194. Man WH, de Steenhuijsen Piters WA, Bogaert D. The   151-157.
               microbiota of the respiratory tract: gatekeeper to respiratory      doi: 10.1038/nmeth.3697
               health. Nat Rev Microbiol. 2017;15(5):259-270.
               doi: 10.1038/nrmicro.2017.14                    207. Sellgren KL, Butala EJ, Gilmour BP, Randell SH, Grego S.
                                                                  A biomimetic multicellular model of the airways using
            195. Comroe JH. The lung. Sci Am. 1966;214(2):56-71.
               https://jstor.org/stable/24931268                  primary human cells. Lab Chip. 2014;14(17):3349-3358.
                                                                  doi: 10.1039/C4LC00552J
            196. Mccracken Jr GH. Diagnosis and management of pneumonia   208. Nalayanda DD, Puleo C, Fulton WB, Sharpe LM, Wang T-H,
               in children. Pediatr Infect Dis J. 2000;19(9):924-928.   Abdullah F. An open-access microfluidic model for lung-
               doi: 10.1097/00006454-200009000-00036
                                                                  specific functional studies at an air-liquid interface. Biomed
            197. Bateman  ED, Reddel HK, van Zyl-Smit RN,  Agusti A.   Microdevices. 2009;11:1081-1089.
               The asthma–COPD overlap syndrome: towards a revised      doi: 10.1007/s10544-009-9325-5
               taxonomy of chronic airways diseases? Lancet Respir Med.   209. Douville NJ, Zamankhan P, Tung Y-C, et al. Combination of
               2015;3(9):719-728.
               doi: 10.1016/S2213-2600(15)00254-4                 fluid and solid mechanical stresses contribute to cell death
                                                                  and detachment in a microfluidic alveolar model. Lab Chip.
            198. Flume PA, Van Devanter DR. State of progress in treating   2011;11(4):609-619.
               cystic fibrosis respiratory disease. BMC Med. 2012;10(1):88.     doi: 10.1039/C0LC00251H
               doi: 10.1186/1741-7015-10-88
                                                               210. Huh D, Matthews BD, Mammoto A,  Montoya-Zavala
            199. Antonelli M, Conti G, Bufi M, et al. Noninvasive ventilation   M,  Hsin  HY,  Ingber  DE.  Reconstituting  organ-level
               for  treatment  of  acute  respiratory  failure  in  patients   lung functions on a chip.  Science. 2010;328(5986):
               undergoing solid organ transplantation: a randomized trial.   1662-1668.
               JAMA. 2000;283(2):235-241.                         doi: 10.1126/science.1188302


            Volume 10 Issue 2 (2024)                       161                                doi: 10.36922/ijb.1970
   164   165   166   167   168   169   170   171   172   173   174