Page 301 - IJB-10-2
P. 301

International Journal of Bioprinting                              Kidney hydrogel print for renal cancer model




               doi: 10.3390/cancers13122970                       processing (DLP) working curve for photocurable materials.
                                                                  Addit Manuf. 2021;37.
            22.  Habanjar O, Diab-Assaf M, Caldefie-Chezet F, Delort L. 3D
               cell culture systems: Tumor application, advantages, and      doi: 10.1016/j.addma.2020.101716
               disadvantages. Int J Mol Sci. 2021;22(22).      34.  Habib A, Sathish V, Mallik S, Khoda B. 3D printability
               doi: 10.3390/ijms222212200                         of alginate-carboxymethyl cellulose hydrogel.  Materials
            23.  Monteiro M, Gaspar V, Ferreira L, Mano J. Hydrogel 3D in   (Basel). 2018;11(3).
               vitro tumor models for screening cell aggregation mediated      doi: 10.3390/ma11030454
               drug response. Biomater Sci. 2020;8(7):1855-1864.  35.  Ouyang L, Yao R, Zhao Y, Sun W. Effect of bioink
               doi: 10.1039/c9bm02075f                            properties on printability and cell viability for 3D
            24.  Pan T, Fong EL, Martinez M, et al. Three-dimensional (3D)   bioplotting of embryonic stem cells.  Biofabrication. 2016;
               culture of bone-derived human 786-O renal cell carcinoma   8(3):035020.
               retains relevant clinical characteristics of bone metastases.      doi: 10.1088/1758-5090/8/3/035020
               Cancer Lett. 2015;365(1):89-95.                 36.  Ljungberg N, Bonini C, Bortolussi F, Boisson C, Heux
               doi: 10.1016/j.canlet.2015.05.019                  L,  Cavaille  JY.  New  nanocomposite materials  reinforced
            25.  Maliszewska-Olejniczak K,  Brodaczewska KK,  Bielecka   with cellulose whiskers in atactic polypropylene effect of
               ZF, et al. Development of extracellular matrix supported   surface and dispersion characteristics.  Biomacromolecules.
               3D culture of renal cancer cells and renal cancer stem cells.   2005;6:2732-2739.
               Cytotechnology. 2019;71(1):149-163.                doi: 10.1021/bm050222v
               doi: 10.1007/s10616-018-0273-x                  37.  Shin MK, Spinks GM, Shin SR, Kim SI, Kim S. Nanocomposite
            26.  Liu K, Cui JJ, Zhan Y, et al. Reprogramming the tumor   hydrogel with high toughness for bioactuators. Adv Mater.
               microenvironment by genome editing for precision cancer   2009;21:1712-1715.
               therapy. Mol Cancer. 2022;21(1):98-121.            doi: 10.1002/adma.200802205
               doi: 10.1186/s12943-022-01561-5                 38.  Huang K, Gu Z, Wu J. Tofu-incorporated hydrogels for
            27.  Nallasamy P, Nimmakayala  RK,  Parte  S,  Are  AC,  Batra   potential bone regeneration. ACS Biomater Sci Eng. 2020;6(5):
               SK, Ponnusamy MP. Tumor microenvironment enriches   3037-3045.
               the stemness features: The architectural event of therapy      doi: 10.1021/acsbiomaterials.9b01997
               resistance and metastasis. Mol Cancer. 2022;21(1):225-250.  39.  Gao  C,  Sow  WT,  Wang  Y,  et  al.  Hydrogel  composite
               doi: 10.1186/s12943-022-01682-x                    scaffolds with an attenuated immunogenicity component
            28.  Zhang X, Chen X, Hong H, Hu R, Liu J, Liu C. Decellularized   for bone tissue engineering applications. J Mater Chem B.
               extracellular matrix scaffolds: Recent trends and emerging   2021;9(8):2033-2041.
               strategies in tissue engineering. Bioact Mater. 2022;10:15-31.     doi: 10.1039/d0tb02588g
               doi: 10.1016/j.bioactmat.2021.09.014            40.  Dongre A, Weinberg RA. New insights into the
            29.  Zhang W, Du A, Liu S, Lv M, Chen S. Research progress in   mechanisms of epithelial-mesenchymal transition and
               decellularized extracellular matrix-derived hydrogels. Regen   implications for cancer. Nat Rev Mol Cell Biol. 2019;20(2):
               Ther. 2021;18:88-96.                               69-84.
               doi: 10.1016/j.reth.2021.04.002                    doi: 10.1038/s41580-018-0080-4
            30.  Yue K, Trujillo-de Santiago G, Alvarez M, Tamayol A,   41.  Feng D, Gao P, Henley N, et al. SMOC2 promotes an
               Annabi N, Khademhosseini A. Synthesis, properties, and   epithelial-mesenchymal  transition  and a  pro-metastatic
               biomedical applications of gelatin methacryloyl (GelMA)   phenotype in epithelial cells of renal cell carcinoma origin.
               hydrogels. Biomaterials. 2015;73:254-271.          Cell Death Dis. 2022;13(7): 639-654.
               doi: 10.1016/j.biomaterials.2015.08.045            doi: 10.1038/s41419-022-05059-2
            31.  Wang F, Zhang R, Gao N, et al. Coagulation-anticoagulation-  42.  Zhong M, Zhu M, Liu Y, et al. TNFAIP8 promotes the
               regulable and tough extracellular matrix hydrogels. Compos   migration of clear cell renal cell carcinoma by regulating the
               Part B: Eng. 2022;239: 109938.                     EMT. J Cancer. 2020;11(10):3061-3071.
               doi: 10.1016/j.compositesb.2022.109938             doi: 10.7150/jca.40191
            32.  Yin J, Yan M, Wang Y, Fu J, Suo H. 3D bioprinting of low-  43.  Mikami S, Katsube K, Oya M, et al. Expression of Snail and
               concentration cell-laden gelatin methacrylate (GelMA)   Slug in renal cell carcinoma: E-cadherin repressor Snail is
               bioinks with a two-step cross-linking strategy.  ACS Appl   associated with cancer invasion and prognosis. Lab Invest.
               Mater Interfaces. 2018;10(8):6849-6857.            2011;91(10):1443-1458.
               doi: 10.1021/acsami.7b16059                        doi: 10.1038/labinvest.2011.111
            33.  Li Y, Mao Q, Yin J, Wang Y, Fu J, Huang  Y. Theoretical   44.  Liu W, Liu Y, Liu H, Zhang W, An H, Xu J. Snail predicts
               prediction and experimental validation of the digital light   recurrence and survival of patients with localized clear cell


            Volume 10 Issue 2 (2024)                       293                                doi: 10.36922/ijb.1413
   296   297   298   299   300   301   302   303   304   305   306