Page 525 - IJB-10-2
P. 525
International Journal of Bioprinting Oozing 3D-printed scaffolds for tissue engineering
62. Alafaghani A, Qattawi A, Ablat MA. Design consideration technology for tissue engineering applications. Polym
for additive manufacturing: fused deposition modelling. Compos. 2022;43(1):1-638.
Open J Appl Sci. 2017;7(6):291-318. doi: 10.1002/pc.26365
doi: 10.4236/ojapps.2017.76024
70. da Silva K, Kumar P, Choonara YE, du Toit LC, Pillay
63. Zhang B, Seong B, Nguyen VD, Byun D. 3D printing V. Three-dimensional printing of extracellular matrix
of high-resolution PLA-based structures by hybrid (ECM)-mimicking scaffolds: a critical review of the current
electrohydrodynamic and fused deposition modeling ECM materials. J Biomed Mater Res A. 2020;108(12):
techniques. J Micromech Microeng. 2016;26(2). 2324-2350.
doi: 10.1088/0960-1317/26/2/025015 doi: 10.1002/jbm.a.36981
64. Heljak MK, Kurzydlowski KJ, Swieszkowski W. Computer 71. Zaszczyńska A, Moczulska-Heljak M, Gradys A, Sajkiewicz
aided design of architecture of degradable tissue engineering P. Advances in 3D printing for tissue engineering. Materials.
scaffolds. Comput Methods Biomech Biomed Engin. 2021;14(12).
2017;20(15):1623-1632. doi: 10.3390/ma14123149
doi: 10.1080/10255842.2017.1399263
72. Tamay DG, Usal TD, Alagoz AS, Yucel D, Hasirci N, Hasirci
65. Chen S, McCarthy A, John JV, Su Y, Xie J. Converting V. 3D and 4D printing of polymers for tissue engineering
2D nanofiber membranes to 3D hierarchical assemblies applications. Front Bioeng Biotechnol. 2019;7(JUL).
with structural and compositional gradients regulates cell doi: 10.3389/fbioe.2019.00164
behavior. Adv Mater. 2020;32(43). 73. Gleadall A, Visscher D, Yang J, Thomas D, Segal J. Review
doi: 10.1002/adma.202003754
of additive manufactured tissue engineering scaffolds:
66. Collins MN, Ren G, Young K, Pina S, Reis RL, Oliveira JM. relationship between geometry and performance. Burns
Scaffold fabrication technologies and structure/function Trauma. 2018;6.
properties in bone tissue engineering. Adv Funct Mater. doi: 10.1186/s41038-018-0121-4
2021;31(21). 74. Baptista R, Guedes M, Pereira MFC, Maurício A, Carrelo H,
doi: 10.1002/adfm.202010609
Cidade T. On the effect of design and fabrication parameters
67. Choi WJ, Hwang KS, Kwon HJ, et al. Rapid development of on mechanical performance of 3D printed PLA scaffolds.
dual porous poly(lactic acid) foam using fused deposition Bioprinting. 2020;20.
modeling (FDM) 3D printing for medical scaffold doi: 10.1016/j.bprint.2020.e00096
application. Mater Sci Eng C. 2020;110. 75. Schneider M, Fritzsche N, Puciul-Malinowska A, et al.
doi: 10.1016/j.msec.2020.110693
Surface etching of 3D printed poly(lactic acid) with NaOH:
68. Söhling N, Neijhoft J, Nienhaus V, et al. 3D-printing of a systematic approach. Polymers. 2020;12(8).
hierarchically designed and osteoconductive bone tissue doi: 10.3390/POLYM12081711
engineering scaffolds. Materials. 2020;13(8). 76. Guduric V, Metz C, Siadous R, et al. Layer-by-layer
doi: 10.3390/MA13081836
bioassembly of cellularized polylactic acid porous
69. Sankaravel SG, Syed RB, Manivachakan V. In vitro and membranes for bone tissue engineering. J Mater Sci Mater
mechanical characterization of PLA/egg shell biocomposite Med. 2017;28(5).
scaffold manufactured using fused deposition modeling doi: 10.1007/s10856-017-5887-6
Volume 10 Issue 2 (2024) 517 doi: 10.36922/ijb.2337

