Page 524 - IJB-10-2
P. 524

International Journal of Bioprinting                          Oozing 3D-printed scaffolds for tissue engineering




            39.  Gupta S, Bissoyi A, Bit A. A review on 3D printable techniques   50.  Kara  Y,  Kovács  NK,  Nagy-György  P,  Boros  R,  Molnár  K.
               for tissue engineering. Bionanoscience. 2018;8(3):868-883.  A novel method and printhead for 3D printing combined
               doi: 10.1007/s12668-018-0525-4                     nano-/microfiber solid structures. Addit Manuf. 2023;61.
                                                                  doi: 10.1016/j.addma.2022.103315
            40.  Yang S, Leong KF, Du ZME, Chua CK. The design of scaffolds
               for use in tissue engineering. Part II. Rapid prototyping   51.  Gleadall A. FullControl GCode designer: open-source
               techniques. Tissue Eng. 2002;8(1):1-11.            software for unconstrained design in additive manufacturing.
               doi: 10.1089/107632702753503009                    Addit Manuf. 2021;46.
                                                                  doi: 10.1016/j.addma.2021.102109
            41.  Sukindar NA, Ariffin MKA, Baharudin BTHT, Jaafar CNA,
               Ismail MIS. Analyzing the effect of nozzle diameter in fused   52.  Naghieh S, Badrossamay M, Foroozmehr E, Kharaziha M.
               deposition modeling for extruding polylactic acid using   Combination of PLA micro-fibers and PCL-gelatin nano-
               open source 3D printing. J Teknol. 2016;78(10):7-15.  fibers for development of bone tissue engineering scaffolds.
               doi: 10.11113/jt.v78.6265                          IJSIEC. 2017;6(1):1-4.
                                                                  doi: 10.4172/2090-4908.1000150
            42.  del Barrio Cortés E, Matutano Molina C, Rodríguez-Lorenzo
               L, Cubo-Mateo N. Generation of controlled micrometric   53.  Molde J, Steele JAM, Pastino AK, Mahat A, Murthy NS,
               fibers  inside  printed  scaffolds  using  standard  FDM  3D   Kohn J. A step toward engineering thick tissues: distributing
               printers. Polymers. 2023;15(1).                    microfibers within 3D printed frames. J Biomed Mater Res A.
               doi: 10.3390/polym15010096                         2020;108(3):581-591.
                                                                  doi: 10.1002/jbm.a.36838
            43.  Zhang Y, Harrison C. Tomo: wearable, low-cost, electrical
               impedance tomography for hand gesture recognition.   54.  Corapi D, Morettini G, Pascoletti G, Zitelli C.
               In:  Proceedings of the 28th Annual ACM Symposium on   Characterization of a polylactic acid (PLA) produced by
               User Interface Software and Technology. Association for   fused deposition modeling (FDM) technology.  Procedia
               Computing Machinery, Inc.; 2015:167-173.           Struct Integr. 2019;24:289-295.
               doi: 10.1145/2642918.2647356                       doi: 10.1016/j.prostr.2020.02.026
            44.  Lu Q, Song KY, Feng Y, Xie J. Fabrication of suspended   55.  Nagarajan S, Radhakrishnan S, Kalkura SN, Balme S, Miele
               uniform polymer microfibers by FDM 3D printing. CIRP J   P, Bechelany M. Overview of protein-based biopolymers for
               Manuf Sci Technol. 2021;32:179-187.                biomedical application. Macromol Chem Phys. 2019;220(14).
               doi: 10.1016/j.cirpj.2020.11.005                   doi: 10.1002/macp.201900126
            45.  Paraskevoudis K, Karayannis P, Koumoulos EP. Real-time 3d   56.  Ebrahimi  F, Ramezani  Dana  H.  Poly  lactic  acid  (PLA)
               printing remote defect detection (Stringing) with computer   polymers: from properties to biomedical applications. Int J
               vision and artificial intelligence. Processes. 2020;8(11):1-15.  Polym Mater Polym Biomater. 2022;71(15):1117-1130.
               doi: 10.3390/pr8111464                             doi: 10.1080/00914037.2021.1944140
            46.  Visscher DO, Bos EJ, Peeters M, et al. Cartilage tissue   57.  Gregor  A,  Filová  E,  Novák  M,  et  al.  Designing  of  PLA
               engineering: preventing tissue scaffold contraction using   scaffolds for bone tissue replacement fabricated by ordinary
               a 3D-printed polymeric cage.  Tissue Eng Part C Methods.   commercial 3D printer. J Biol Eng. 2017;11(1).
               2016;22(6):573-584.                                doi: 10.1186/s13036-017-0074-3
               doi: 10.1089/ten.tec.2016.0073                  58.  Wasyłeczko M, Sikorska W, Chwojnowski A. Review of
            47.  Zhang Z, He H, Fu W, Ji D, Ramakrishna S. Electro-  synthetic and hybrid scaffolds in cartilage tissue engineering.
               hydrodynamic direct-writing technology toward patterned   Membranes. 2020;10(11):1-28.
               ultra-thin fibers: advances, materials and applications. Nano      doi: 10.3390/membranes10110348
               Today. 2020;35.                                 59.  Szojka A, Lalh K, Andrews SHJ, Jomha NM, Osswald M,
               doi: 10.1016/j.nantod.2020.100942                  Adesida AB. Biomimetic 3D printed scaffolds for meniscus
            48.  Lannutti J, Reneker D, Ma T, Tomasko D, Farson D.   tissue engineering. Bioprinting. 2017;8:1-7.
               Electrospinning for tissue engineering scaffolds. Mater Sci      doi: 10.1016/j.bprint.2017.08.001
               Eng C. 2007;27(3):504-509.                      60.  Singhvi MS, Zinjarde SS, Gokhale DV. Polylactic acid:
               doi: 10.1016/j.msec.2006.05.019                    synthesis and biomedical applications.  J Appl Microbiol.
                                                                  2019;127(6):1612-1626.
            49.  Chlanda A, Kijeńska E, Święszkowski W. Microscopic
               methods for characterization of selected surface properties      doi: 10.1111/jam.14290
               of biodegradable, nanofibrous tissue engineering scaffolds.   61.  Lasprilla AJR, Martinez GAR, Lunelli BH, Jardini AL, Filho
               In: Proceedings of the Materials Science Forum. Trans Tech   RM. Poly-lactic acid synthesis for application in biomedical
               Publications Ltd; 2017:213-216.                    devices - a review. Biotechnol Adv. 2012;30(1):321-328.
               doi: 10.4028/www.scientific.net/MSF.890.213        doi: 10.1016/j.biotechadv.2011.06.019



            Volume 10 Issue 2 (2024)                       516                                doi: 10.36922/ijb.2337
   519   520   521   522   523   524   525   526   527   528   529