Page 524 - IJB-10-2
P. 524
International Journal of Bioprinting Oozing 3D-printed scaffolds for tissue engineering
39. Gupta S, Bissoyi A, Bit A. A review on 3D printable techniques 50. Kara Y, Kovács NK, Nagy-György P, Boros R, Molnár K.
for tissue engineering. Bionanoscience. 2018;8(3):868-883. A novel method and printhead for 3D printing combined
doi: 10.1007/s12668-018-0525-4 nano-/microfiber solid structures. Addit Manuf. 2023;61.
doi: 10.1016/j.addma.2022.103315
40. Yang S, Leong KF, Du ZME, Chua CK. The design of scaffolds
for use in tissue engineering. Part II. Rapid prototyping 51. Gleadall A. FullControl GCode designer: open-source
techniques. Tissue Eng. 2002;8(1):1-11. software for unconstrained design in additive manufacturing.
doi: 10.1089/107632702753503009 Addit Manuf. 2021;46.
doi: 10.1016/j.addma.2021.102109
41. Sukindar NA, Ariffin MKA, Baharudin BTHT, Jaafar CNA,
Ismail MIS. Analyzing the effect of nozzle diameter in fused 52. Naghieh S, Badrossamay M, Foroozmehr E, Kharaziha M.
deposition modeling for extruding polylactic acid using Combination of PLA micro-fibers and PCL-gelatin nano-
open source 3D printing. J Teknol. 2016;78(10):7-15. fibers for development of bone tissue engineering scaffolds.
doi: 10.11113/jt.v78.6265 IJSIEC. 2017;6(1):1-4.
doi: 10.4172/2090-4908.1000150
42. del Barrio Cortés E, Matutano Molina C, Rodríguez-Lorenzo
L, Cubo-Mateo N. Generation of controlled micrometric 53. Molde J, Steele JAM, Pastino AK, Mahat A, Murthy NS,
fibers inside printed scaffolds using standard FDM 3D Kohn J. A step toward engineering thick tissues: distributing
printers. Polymers. 2023;15(1). microfibers within 3D printed frames. J Biomed Mater Res A.
doi: 10.3390/polym15010096 2020;108(3):581-591.
doi: 10.1002/jbm.a.36838
43. Zhang Y, Harrison C. Tomo: wearable, low-cost, electrical
impedance tomography for hand gesture recognition. 54. Corapi D, Morettini G, Pascoletti G, Zitelli C.
In: Proceedings of the 28th Annual ACM Symposium on Characterization of a polylactic acid (PLA) produced by
User Interface Software and Technology. Association for fused deposition modeling (FDM) technology. Procedia
Computing Machinery, Inc.; 2015:167-173. Struct Integr. 2019;24:289-295.
doi: 10.1145/2642918.2647356 doi: 10.1016/j.prostr.2020.02.026
44. Lu Q, Song KY, Feng Y, Xie J. Fabrication of suspended 55. Nagarajan S, Radhakrishnan S, Kalkura SN, Balme S, Miele
uniform polymer microfibers by FDM 3D printing. CIRP J P, Bechelany M. Overview of protein-based biopolymers for
Manuf Sci Technol. 2021;32:179-187. biomedical application. Macromol Chem Phys. 2019;220(14).
doi: 10.1016/j.cirpj.2020.11.005 doi: 10.1002/macp.201900126
45. Paraskevoudis K, Karayannis P, Koumoulos EP. Real-time 3d 56. Ebrahimi F, Ramezani Dana H. Poly lactic acid (PLA)
printing remote defect detection (Stringing) with computer polymers: from properties to biomedical applications. Int J
vision and artificial intelligence. Processes. 2020;8(11):1-15. Polym Mater Polym Biomater. 2022;71(15):1117-1130.
doi: 10.3390/pr8111464 doi: 10.1080/00914037.2021.1944140
46. Visscher DO, Bos EJ, Peeters M, et al. Cartilage tissue 57. Gregor A, Filová E, Novák M, et al. Designing of PLA
engineering: preventing tissue scaffold contraction using scaffolds for bone tissue replacement fabricated by ordinary
a 3D-printed polymeric cage. Tissue Eng Part C Methods. commercial 3D printer. J Biol Eng. 2017;11(1).
2016;22(6):573-584. doi: 10.1186/s13036-017-0074-3
doi: 10.1089/ten.tec.2016.0073 58. Wasyłeczko M, Sikorska W, Chwojnowski A. Review of
47. Zhang Z, He H, Fu W, Ji D, Ramakrishna S. Electro- synthetic and hybrid scaffolds in cartilage tissue engineering.
hydrodynamic direct-writing technology toward patterned Membranes. 2020;10(11):1-28.
ultra-thin fibers: advances, materials and applications. Nano doi: 10.3390/membranes10110348
Today. 2020;35. 59. Szojka A, Lalh K, Andrews SHJ, Jomha NM, Osswald M,
doi: 10.1016/j.nantod.2020.100942 Adesida AB. Biomimetic 3D printed scaffolds for meniscus
48. Lannutti J, Reneker D, Ma T, Tomasko D, Farson D. tissue engineering. Bioprinting. 2017;8:1-7.
Electrospinning for tissue engineering scaffolds. Mater Sci doi: 10.1016/j.bprint.2017.08.001
Eng C. 2007;27(3):504-509. 60. Singhvi MS, Zinjarde SS, Gokhale DV. Polylactic acid:
doi: 10.1016/j.msec.2006.05.019 synthesis and biomedical applications. J Appl Microbiol.
2019;127(6):1612-1626.
49. Chlanda A, Kijeńska E, Święszkowski W. Microscopic
methods for characterization of selected surface properties doi: 10.1111/jam.14290
of biodegradable, nanofibrous tissue engineering scaffolds. 61. Lasprilla AJR, Martinez GAR, Lunelli BH, Jardini AL, Filho
In: Proceedings of the Materials Science Forum. Trans Tech RM. Poly-lactic acid synthesis for application in biomedical
Publications Ltd; 2017:213-216. devices - a review. Biotechnol Adv. 2012;30(1):321-328.
doi: 10.4028/www.scientific.net/MSF.890.213 doi: 10.1016/j.biotechadv.2011.06.019
Volume 10 Issue 2 (2024) 516 doi: 10.36922/ijb.2337

