Page 201 - IJB-10-3
P. 201
International Journal of Bioprinting Bioprinted tissue-on-a-chip in drug screening
68. Wang H, Yu H, Zhou X, et al. An overview of extracellular nanogel with hemostasis and sustainable antibacterial
matrix-based bioinks for 3D bioprinting. Front Bioeng property for wound healing. ACS Appl Mater Interfaces.
Biotechnol. 2022;10:905438. 2018;10(16):13304-13316.
doi: 10.3389/fbioe.2022.905438 doi: 10.1021/acsami.7b18927
69. Liu C, Pei M, Li Q, Zhang Y. Decellularized extracellular 81. Shi L, Zhang J, Zhao M, et al. Effects of polyethylene glycol
matrix mediates tissue construction and regeneration. Front on the surface of nanoparticles for targeted drug delivery.
Med. 2022;16(1):56-82. Nanoscale. 2021;13(24):10748-10764.
doi: 10.1007/s11684-021-0900-3 doi: 10.1039/d1nr02065j
70. Rana D, Kumar TS, Ramalingam M. Cell-laden hydrogels 82. Wang J, Williamson GS, Yang H. Branched polyrotaxane
for tissue engineering. J Biomater Tissue Eng. 2014;4. hydrogels consisting of alpha-cyclodextrin and low-
doi: 10.1166/jbt.2014.1206 molecular-weight four-arm polyethylene glycol and the
71. Liu H, Gong Y, Zhang K, et al. Recent advances in utility of their thixotropic property for controlled drug
decellularized matrix-derived materials for bioink and 3D release. Colloids Surf B Biointerfaces. 2018;165:144-149.
bioprinting. Gels. 2023;9(3):195. doi: 10.1016/j.colsurfb.2018.02.032
doi: 10.3390/gels9030195 83. Liu P, Chen W, Liu C, Tian M, Liu P. A novel poly (vinyl
72. Abaci A, Guvendiren M. Designing decellularized alcohol)/poly (ethylene glycol) scaffold for tissue engineering
extracellular matrix-based bioinks for 3D bioprinting. Adv with a unique bimodal open-celled structure fabricated
Healthc Mater. 2020;9(24):e2000734. using supercritical fluid foaming. Sci Rep. 2019;9(1):9534.
doi: 10.1002/adhm.202000734 doi: 10.1038/s41598-019-46061-7
73. Colosi C, Shin SR, Manoharan V, et al. Microfluidic 84. Labet M, Thielemans W. Synthesis of polycaprolactone: a
bioprinting of heterogeneous 3D tissue constructs using review. Chem Soc Rev. 2009;38(12):3484-504.
low-viscosity bioink. Adv Mater. 2016;28(4):677-684. doi: 10.1039/b820162p
doi: 10.1002/adma.201503310 85. Liu G, Chen J, Wang X, Liu Y, Ma Y, Tu X. Functionalized
74. Soltan N, Ning L, Mohabatpour F, Papagerakis P, Chen 3D-printed ST2/gelatin methacryloyl/polcaprolactone
X. Printability and cell viability in bioprinting alginate scaffolds for enhancing bone regeneration with
dialdehyde-gelatin scaffolds. ACS Biomater Sci Eng. vascularization. Int J Mol Sci. 2022;23(15):8347.
2019;5(6):2976-2987. doi: 10.3390/ijms23158347
doi: 10.1021/acsbiomaterials.9b00167 86. Schmitt PR, Dwyer KD, Coulombe KLK. Current
75. Jeon O, Lee YB, Lee SJ, Guliyeva N, Lee J, Alsberg E. Stem applications of polycaprolactone as a scaffold material for
cell-laden hydrogel bioink for generation of high resolution heart regeneration. ACS Appl Bio Mater. 2022;5(6):2461-2480.
and fidelity engineered tissues with complex geometries. doi: 10.1021/acsabm.2c00174
Bioact Mater. 2021;15:185-193. 87. Khati V, Ramachandraiah H, Pati F, Svahn HA, Gaudenzi G,
doi: 10.1016/j.bioactmat.2021.11.025 Russom A. 3D bioprinting of multi-material decellularized
76. Cui R, Li S, Li T, et al. Natural polymer derived hydrogel liver matrix hydrogel at physiological temperatures.
bioink with enhanced thixotropy improves printability and Biosensors. 2022;12(7):521.
cellular preservation in 3D bioprinting. J Mater Chem B. doi: 10.3390/bios12070521
2023;11(17):3907-3918. 88. Chen H, Fei F, Li X, et al. A structure-supporting, self-healing,
doi: 10.1039/d2tb02786k and high permeating hydrogel bioink for establishment of
77. Wang Q, Karadas Ö, Backman O, et al. Aqueous two-phase diverse homogeneous tissue-like constructs. Bioact Mater.
emulsion bioresin for facile one-step 3D microgel-based 2021;6(10):3580-3595.
bioprinting. Adv Healthc Mater. 2023;12(19):e2203243. doi: 10.1016/j.bioactmat.2021.03.019
doi: 10.1002/adhm.202203243 89. Xu T, Jin J, Gregory C, Hickman JJ, Boland T. Inkjet printing
78. Zhang W, Kuss M, Yan Y, Shi W. Dynamic alginate of viable mammalian cells. Biomaterials. 2005;26(1):93-99.
hydrogel as an antioxidative bioink for bioprinting. Gels. doi: 10.1016/j.biomaterials.2004.04.011
2023;9(4):312. 90. Mandrycky CJ, Howard CC, Rayner SG, Shin YJ, Zheng Y.
doi: 10.3390/gels9040312 Organ-on-a-chip systems for vascular biology. J Mol Cell
79. Sachdev A 4th, Acharya S, Gadodia T, et al. A review on Cardiol. 2021;159:1-13.
techniques and biomaterials used in 3D bioprinting. Cureus. doi: 10.1016/j.yjmcc.2021.06.002
2022;14(8):e28463. 91. Kolesky DB, Truby RL, Gladman AS, Busbee TA, Homan KA,
doi: 10.7759/cureus.28463
Lewis JA. 3D bioprinting of vascularized, heterogeneous cell-
80. Zhu J, Li F, Wang X, Yu J, Wu D. Hyaluronic acid and laden tissue constructs. Adv Mater. 2014;26(19):3124-3130.
polyethylene glycol hybrid hydrogel encapsulating doi: 10.1002/adma.201305506
Volume 10 Issue 3 (2024) 193 doi: 10.36922/ijb.1951

