Page 201 - IJB-10-3
P. 201

International Journal of Bioprinting                             Bioprinted tissue-on-a-chip in drug screening




            68.  Wang H, Yu H, Zhou X, et al. An overview of extracellular   nanogel with hemostasis and sustainable antibacterial
               matrix-based bioinks for 3D bioprinting.  Front Bioeng   property for wound healing.  ACS Appl Mater Interfaces.
               Biotechnol. 2022;10:905438.                        2018;10(16):13304-13316.
               doi: 10.3389/fbioe.2022.905438                     doi: 10.1021/acsami.7b18927
            69.  Liu C, Pei M, Li Q, Zhang Y. Decellularized extracellular   81.  Shi L, Zhang J, Zhao M, et al. Effects of polyethylene glycol
               matrix mediates tissue construction and regeneration. Front   on the surface of nanoparticles for targeted drug delivery.
               Med. 2022;16(1):56-82.                             Nanoscale. 2021;13(24):10748-10764.
               doi: 10.1007/s11684-021-0900-3                     doi: 10.1039/d1nr02065j
            70.  Rana D, Kumar TS, Ramalingam M. Cell-laden hydrogels   82.  Wang J, Williamson GS, Yang H. Branched polyrotaxane
               for tissue engineering. J Biomater Tissue Eng. 2014;4.  hydrogels consisting of alpha-cyclodextrin and low-
               doi: 10.1166/jbt.2014.1206                         molecular-weight four-arm polyethylene glycol and the
            71.  Liu H, Gong Y, Zhang K, et al. Recent advances in   utility of their thixotropic property for controlled drug
               decellularized matrix-derived materials for bioink and 3D   release. Colloids Surf B Biointerfaces. 2018;165:144-149.
               bioprinting. Gels. 2023;9(3):195.                  doi: 10.1016/j.colsurfb.2018.02.032
               doi: 10.3390/gels9030195                        83.  Liu P, Chen W, Liu C, Tian M, Liu P. A novel poly (vinyl
            72.  Abaci A, Guvendiren M. Designing decellularized   alcohol)/poly (ethylene glycol) scaffold for tissue engineering
               extracellular matrix-based bioinks for 3D bioprinting. Adv   with a unique bimodal open-celled structure fabricated
               Healthc Mater. 2020;9(24):e2000734.                using supercritical fluid foaming. Sci Rep. 2019;9(1):9534.
               doi: 10.1002/adhm.202000734                        doi: 10.1038/s41598-019-46061-7
            73.  Colosi C, Shin SR, Manoharan V, et al. Microfluidic   84.  Labet M, Thielemans W. Synthesis of polycaprolactone: a
               bioprinting of heterogeneous 3D tissue constructs using   review. Chem Soc Rev. 2009;38(12):3484-504.
               low-viscosity bioink. Adv Mater. 2016;28(4):677-684.     doi: 10.1039/b820162p
               doi: 10.1002/adma.201503310                     85.  Liu G, Chen J, Wang X, Liu Y, Ma Y, Tu X. Functionalized
            74.  Soltan  N,  Ning  L,  Mohabatpour  F,  Papagerakis  P,  Chen   3D-printed  ST2/gelatin  methacryloyl/polcaprolactone
               X. Printability and cell viability in bioprinting alginate   scaffolds  for  enhancing  bone  regeneration  with
               dialdehyde-gelatin scaffolds.  ACS Biomater Sci Eng.   vascularization. Int J Mol Sci. 2022;23(15):8347.
               2019;5(6):2976-2987.                               doi: 10.3390/ijms23158347
               doi: 10.1021/acsbiomaterials.9b00167            86.  Schmitt PR, Dwyer KD, Coulombe KLK. Current
            75.  Jeon O, Lee YB, Lee SJ, Guliyeva N, Lee J, Alsberg E. Stem   applications  of  polycaprolactone  as  a  scaffold  material  for
               cell-laden hydrogel bioink for generation of high resolution   heart regeneration. ACS Appl Bio Mater. 2022;5(6):2461-2480.
               and  fidelity engineered  tissues  with  complex  geometries.      doi: 10.1021/acsabm.2c00174
               Bioact Mater. 2021;15:185-193.                  87.  Khati V, Ramachandraiah H, Pati F, Svahn HA, Gaudenzi G,
               doi: 10.1016/j.bioactmat.2021.11.025               Russom A. 3D bioprinting of multi-material decellularized
            76.  Cui R, Li S, Li T, et al. Natural polymer derived hydrogel   liver matrix hydrogel at physiological temperatures.
               bioink with enhanced thixotropy improves printability and   Biosensors. 2022;12(7):521.
               cellular preservation  in 3D  bioprinting.  J Mater Chem B.      doi: 10.3390/bios12070521
               2023;11(17):3907-3918.                          88.  Chen H, Fei F, Li X, et al. A structure-supporting, self-healing,
               doi: 10.1039/d2tb02786k                            and high permeating hydrogel bioink for establishment of
            77.  Wang Q, Karadas Ö, Backman O, et al. Aqueous two-phase   diverse homogeneous tissue-like constructs. Bioact Mater.
               emulsion bioresin for  facile  one-step 3D  microgel-based   2021;6(10):3580-3595.
               bioprinting. Adv Healthc Mater. 2023;12(19):e2203243.     doi: 10.1016/j.bioactmat.2021.03.019
               doi: 10.1002/adhm.202203243                     89.  Xu T, Jin J, Gregory C, Hickman JJ, Boland T. Inkjet printing
            78.  Zhang W, Kuss M, Yan Y, Shi W. Dynamic alginate   of viable mammalian cells. Biomaterials. 2005;26(1):93-99.
               hydrogel as an antioxidative bioink for bioprinting.  Gels.       doi: 10.1016/j.biomaterials.2004.04.011
               2023;9(4):312.                                  90.  Mandrycky CJ, Howard CC, Rayner SG, Shin YJ, Zheng Y.
               doi: 10.3390/gels9040312                           Organ-on-a-chip systems for vascular biology.  J Mol Cell
            79.  Sachdev A 4th, Acharya S, Gadodia T, et al. A review on   Cardiol. 2021;159:1-13.
               techniques and biomaterials used in 3D bioprinting. Cureus.      doi: 10.1016/j.yjmcc.2021.06.002
               2022;14(8):e28463.                              91.  Kolesky DB, Truby RL, Gladman AS, Busbee TA, Homan KA,
               doi: 10.7759/cureus.28463
                                                                  Lewis JA. 3D bioprinting of vascularized, heterogeneous cell-
            80.  Zhu J, Li F, Wang X, Yu J, Wu D. Hyaluronic acid and   laden tissue constructs. Adv Mater. 2014;26(19):3124-3130.
               polyethylene glycol  hybrid hydrogel  encapsulating      doi: 10.1002/adma.201305506


            Volume 10 Issue 3 (2024)                       193                                doi: 10.36922/ijb.1951
   196   197   198   199   200   201   202   203   204   205   206