Page 202 - IJB-10-3
P. 202

International Journal of Bioprinting                              Bioprinted tissue-on-a-chip in drug screening




            92.  Cui X, Dean D, Ruggeri ZM, Boland T. Cell damage   104. Zeng X, Meng Z, He J, et al. Embedded bioprinting for
               evaluation of thermal inkjet printed Chinese hamster ovary   designer 3D tissue constructs with complex structural
               cells. Biotechnol Bioeng. 2010;106(6):963-969.     organization. Acta Biomater. 2022;140:1-22.
               doi: 10.1002/bit.22762                             doi: 10.1016/j.actbio.2021.11.048
            93.  Gudapati H, Dey M, Ozbolat I. A comprehensive review   105. Li Q, Ma L, Gao Z, et al. Regulable supporting baths
               on droplet-based bioprinting: past, present and future.   for  embedded printing  of  soft  biomaterials  with
               Biomaterials. 2016;102:20-42.                      variable stiffness.  ACS Appl Mater Interfaces. 2022;
               doi: 10.1016/j.biomaterials.2016.06.012            14(37):41695-41711.
                                                                  doi: 10.1021/acsami.2c09221
            94.  Angelopoulos I, Allenby MC, Lim M, Zamorano
               M. Engineering inkjet bioprinting processes toward   106. Shao L, Gao Q, Xie C, et al. Directly coaxial 3D bioprinting
               translational therapies.  Biotechnol  Bioeng. 2020;117(1):   of large-scale vascularized tissue constructs. Biofabrication.
               272-284.                                           2020;12(3):035014.
               doi: 10.1002/bit.27176                             doi: 10.1088/1758-5090/ab7e76
            95.  Stratesteffen H, Köpf M, Kreimendahl F, Blaeser A,   107. Zheng W, Xie R, Liang X, Liang Q. Fabrication of biomaterials
               Jockenhoevel S, Fischer H. GelMA-collagen blends enable   and biostructures based on microfluidic manipulation.
               drop-on-demand 3D printablility and promote angiogenesis.   Small. 2022;18(16):e2105867.
               Biofabrication. 2017;9(4):045002.                  doi: 10.1002/smll.202105867
               doi: 10.1088/1758-5090/aa857c                   108. Fan XY, Deng ZF, Yan YY, et al. Application of microfluidic
            96.  Li W, Wang M, Ma H, Chapa-Villarreal FA, Lobo AO, Zhang   chips in anticancer drug screening. Bosn J Basic Med Sci.
               YS. Stereolithography apparatus and digital light processing-  2022;22(3):302-314.
               based 3D bioprinting for tissue fabrication.  iScience.      doi: 10.17305/bjbms.2021.6484
               2023;26(2):106039.                              109. Torino S, Corrado B, Iodice M, Coppola G. PDMS-based
               doi: 10.1016/j.isci.2023.106039                    microfluidic devices for cell culture. Inventions. 2018;3:65.

            97.  Ozbolat IT, Hospodiuk M. Current advances and future      doi: 10.3390/inventions3030065
               perspectives  in extrusion-based bioprinting.  Biomaterials.   110. Yu F, Choudhury D. Microfluidic bioprinting for organ-on-
               2016;76:321-343.                                   a-chip models. Drug Discov Today. 2019;24(6):1248-1257.
               doi: 10.1016/j.biomaterials.2015.10.076            doi: 10.1016/j.drudis.2019.03.025
            98.  Naghieh S, Chen X. Printability-a key issue in extrusion-  111. Yi HG, Jeong YH, Kim Y, et al. A bioprinted human-
               based bioprinting. J Pharm Anal. 2021;11(5):564-579.  glioblastoma-on-a-chip for the identification of patient-
               doi: 10.1016/j.jpha.2021.02.001                    specific responses to chemoradiotherapy. Nat Biomed Eng.
            99.  Benwood C, Chrenek J, Kirsch RL, et al. Natural biomaterials   2019;3(7):509-519.
               and their use as bioinks for printing tissues. Bioengineering.      doi: 10.1038/s41551-019-0363-x
               2021;8(2):27.                                   112. Xu F, Wu J, Wang S, Durmus NG, Gurkan UA, Demirci
               doi: 10.3390/bioengineering8020027                 U. Microengineering methods for cell-based microarrays
            100. Mohan TS, Datta P, Nesaei S, Ozbolat V, Ozbolat IT. 3D   and  high-throughput  drug-screening  applications.
               coaxial bioprinting: process mechanisms, bioinks and   Biofabrication. 2011;3(3):034101.
               applications. Prog Biomed Eng. 2022;4(2):022003.     doi: 10.1088/1758-5082/3/3/034101
               doi: 10.1088/2516-1091/ac631c                   113. Liang Y, Pan J, Fang Q. Research advances of high-
            101. Yu Y, Xie R, He Y, et al. Dual-core coaxial bioprinting of   throughput cell-based drug screening systems based on
               double-channel constructs with a potential for perfusion   microfluidic technique. Se Pu. 2021;39(6):567-577.
               and interaction of cells. Biofabrication. 2022;14(3).     doi: 10.3724/SP.J.1123.2020.07014
               doi: 10.1088/1758-5090/ac6e88                   114. Wu  Q,  Liu  J,  Wang  X,  et  al.  Organ-on-a-chip:  recent
                                                                  breakthroughs and future prospects.  Biomed Eng Online.
            102. Ning L, Mehta R, Cao C, et al. Embedded 3D bioprinting
               of gelatin methacryloyl-based constructs with highly   2020;19(1):9.
               tunable structural fidelity.  ACS Appl Mater Interfaces.      doi: 10.1186/s12938-020-0752-0
               2020;12(40):44563-44577.                        115. Knowlton S, Tasoglu S. A bioprinted liver-on-a-chip for
               doi: 10.1021/acsami.0c15078                        drug screening applications.Trends Biotechnol. 2016;
            103. Zhou K,  Sun Y, Yang  J,  Mao H, Gu  Z. Hydrogels  for  3D   34(9):681-682.
               embedded bioprinting: a focused review on bioinks      doi: 10.1016/j.tibtech.2016.05.014
               and support baths.  J Mater Chem B. 2022;10(12):   116. Hoofnagle  JH, Björnsson  ES. Drug-induced liver injury -
               1897-1907.                                         types and phenotypes. N Engl J Med. 2019;381(3):264-273.
               doi: 10.1039/d1tb02554f                            doi: 10.1056/NEJMra1816149


            Volume 10 Issue 3 (2024)                       194                                doi: 10.36922/ijb.1951
   197   198   199   200   201   202   203   204   205   206   207