Page 202 - IJB-10-3
P. 202
International Journal of Bioprinting Bioprinted tissue-on-a-chip in drug screening
92. Cui X, Dean D, Ruggeri ZM, Boland T. Cell damage 104. Zeng X, Meng Z, He J, et al. Embedded bioprinting for
evaluation of thermal inkjet printed Chinese hamster ovary designer 3D tissue constructs with complex structural
cells. Biotechnol Bioeng. 2010;106(6):963-969. organization. Acta Biomater. 2022;140:1-22.
doi: 10.1002/bit.22762 doi: 10.1016/j.actbio.2021.11.048
93. Gudapati H, Dey M, Ozbolat I. A comprehensive review 105. Li Q, Ma L, Gao Z, et al. Regulable supporting baths
on droplet-based bioprinting: past, present and future. for embedded printing of soft biomaterials with
Biomaterials. 2016;102:20-42. variable stiffness. ACS Appl Mater Interfaces. 2022;
doi: 10.1016/j.biomaterials.2016.06.012 14(37):41695-41711.
doi: 10.1021/acsami.2c09221
94. Angelopoulos I, Allenby MC, Lim M, Zamorano
M. Engineering inkjet bioprinting processes toward 106. Shao L, Gao Q, Xie C, et al. Directly coaxial 3D bioprinting
translational therapies. Biotechnol Bioeng. 2020;117(1): of large-scale vascularized tissue constructs. Biofabrication.
272-284. 2020;12(3):035014.
doi: 10.1002/bit.27176 doi: 10.1088/1758-5090/ab7e76
95. Stratesteffen H, Köpf M, Kreimendahl F, Blaeser A, 107. Zheng W, Xie R, Liang X, Liang Q. Fabrication of biomaterials
Jockenhoevel S, Fischer H. GelMA-collagen blends enable and biostructures based on microfluidic manipulation.
drop-on-demand 3D printablility and promote angiogenesis. Small. 2022;18(16):e2105867.
Biofabrication. 2017;9(4):045002. doi: 10.1002/smll.202105867
doi: 10.1088/1758-5090/aa857c 108. Fan XY, Deng ZF, Yan YY, et al. Application of microfluidic
96. Li W, Wang M, Ma H, Chapa-Villarreal FA, Lobo AO, Zhang chips in anticancer drug screening. Bosn J Basic Med Sci.
YS. Stereolithography apparatus and digital light processing- 2022;22(3):302-314.
based 3D bioprinting for tissue fabrication. iScience. doi: 10.17305/bjbms.2021.6484
2023;26(2):106039. 109. Torino S, Corrado B, Iodice M, Coppola G. PDMS-based
doi: 10.1016/j.isci.2023.106039 microfluidic devices for cell culture. Inventions. 2018;3:65.
97. Ozbolat IT, Hospodiuk M. Current advances and future doi: 10.3390/inventions3030065
perspectives in extrusion-based bioprinting. Biomaterials. 110. Yu F, Choudhury D. Microfluidic bioprinting for organ-on-
2016;76:321-343. a-chip models. Drug Discov Today. 2019;24(6):1248-1257.
doi: 10.1016/j.biomaterials.2015.10.076 doi: 10.1016/j.drudis.2019.03.025
98. Naghieh S, Chen X. Printability-a key issue in extrusion- 111. Yi HG, Jeong YH, Kim Y, et al. A bioprinted human-
based bioprinting. J Pharm Anal. 2021;11(5):564-579. glioblastoma-on-a-chip for the identification of patient-
doi: 10.1016/j.jpha.2021.02.001 specific responses to chemoradiotherapy. Nat Biomed Eng.
99. Benwood C, Chrenek J, Kirsch RL, et al. Natural biomaterials 2019;3(7):509-519.
and their use as bioinks for printing tissues. Bioengineering. doi: 10.1038/s41551-019-0363-x
2021;8(2):27. 112. Xu F, Wu J, Wang S, Durmus NG, Gurkan UA, Demirci
doi: 10.3390/bioengineering8020027 U. Microengineering methods for cell-based microarrays
100. Mohan TS, Datta P, Nesaei S, Ozbolat V, Ozbolat IT. 3D and high-throughput drug-screening applications.
coaxial bioprinting: process mechanisms, bioinks and Biofabrication. 2011;3(3):034101.
applications. Prog Biomed Eng. 2022;4(2):022003. doi: 10.1088/1758-5082/3/3/034101
doi: 10.1088/2516-1091/ac631c 113. Liang Y, Pan J, Fang Q. Research advances of high-
101. Yu Y, Xie R, He Y, et al. Dual-core coaxial bioprinting of throughput cell-based drug screening systems based on
double-channel constructs with a potential for perfusion microfluidic technique. Se Pu. 2021;39(6):567-577.
and interaction of cells. Biofabrication. 2022;14(3). doi: 10.3724/SP.J.1123.2020.07014
doi: 10.1088/1758-5090/ac6e88 114. Wu Q, Liu J, Wang X, et al. Organ-on-a-chip: recent
breakthroughs and future prospects. Biomed Eng Online.
102. Ning L, Mehta R, Cao C, et al. Embedded 3D bioprinting
of gelatin methacryloyl-based constructs with highly 2020;19(1):9.
tunable structural fidelity. ACS Appl Mater Interfaces. doi: 10.1186/s12938-020-0752-0
2020;12(40):44563-44577. 115. Knowlton S, Tasoglu S. A bioprinted liver-on-a-chip for
doi: 10.1021/acsami.0c15078 drug screening applications.Trends Biotechnol. 2016;
103. Zhou K, Sun Y, Yang J, Mao H, Gu Z. Hydrogels for 3D 34(9):681-682.
embedded bioprinting: a focused review on bioinks doi: 10.1016/j.tibtech.2016.05.014
and support baths. J Mater Chem B. 2022;10(12): 116. Hoofnagle JH, Björnsson ES. Drug-induced liver injury -
1897-1907. types and phenotypes. N Engl J Med. 2019;381(3):264-273.
doi: 10.1039/d1tb02554f doi: 10.1056/NEJMra1816149
Volume 10 Issue 3 (2024) 194 doi: 10.36922/ijb.1951

