Page 365 - IJB-10-3
P. 365
International Journal of Bioprinting hNVU chip for brain modeling and drug screening
27. Cho WW, Ahn M, Kim BS, Cho DW. Blood-lymphatic 38. Pizzo AM, Kokini K, Vaughn LC, Waisner BZ, Voytik-
integrated system with heterogeneous melanoma Harbin SL. Extracellular matrix (ECM) microstructural
spheroids via in-bath three-dimensional bioprinting for composition regulates local cell-ECM biomechanics and
modeling of combinational targeted therapy. Adv Sci. fundamental fibroblast behavior: a multidimensional
2022;9(29):e2202093. perspective. J Appl Physiol. 2005;98(5):1909-1921.
doi: 10.1002/advs.202202093 doi: 10.1152/japplphysiol.01137.2004
28. Potjewyd G, Moxon S, Wang T, Domingos M, Hooper 39. Roeder BA. The Influence of Extracellular Matrix (ECM)
NM. Tissue engineering 3D neurovascular units: a Microstructure on the Macro and Microlevel Biomechanical
biomaterials and bioprinting perspective. Trends Biotechnol. Behavior of Tissue Constructs and Cell-ECM Interactions.
2018;36(4):457-472. Dissertation. Purdue University; 2003.
doi: 10.1016/j.tibtech.2018.01.003
40. Mokkapati S, Fleger-Weckmann A, Bechtel M, et al.
29. Neufeld L, Yeini E, Reisman N, et al. Microengineered Basement membrane deposition of nidogen 1 but not
perfusable 3D-bioprinted glioblastoma model for in nidogen 2 requires the nidogen binding module of the
vivo mimicry of tumor microenvironment. Sci Adv. laminin gamma1 chain. J Biol Chem. 2011;286(3):1911-
2021;7(34):eabi9119. 1918.
doi: 10.1126/sciadv.abi9119 doi: 10.1074/jbc.M110.149864
30. Nothdurfter D, Ploner C, Coraça-Huber DC, et al. 3D 41. Yurchenco PD, Patton BL. Developmental and pathogenic
bioprinted, vascularized neuroblastoma tumor environment mechanisms of basement membrane assembly. Curr Pharm
in fluidic chip devices for precision medicine drug testing. Des. 2009;15(12):1277-1294.
Biofabrication. 2022;14(3):035002. doi: 10.2174/138161209787846766
doi: 10.1088/1758-5090/ac5fb7
42. Wang LB, Karpova A, Gritsenko MA, et al. Proteogenomic
31. Appelt-Menzel A, Cubukova A, Günther K, et al. and metabolomic characterization of human glioblastoma.
Establishment of a human blood‒brain barrier coculture Cancer Cell. 2021;39(4):509-528.e20.
model mimicking the neurovascular unit using induced doi: 10.1016/j.ccell.2021.01.006
pluri- and multipotent stem cells. Stem Cell Rep.
2017;8(4):894-906. 43. Wu JI, Wang LH. Emerging roles of gap junction proteins
doi: 10.1016/j.stemcr.2017.02.021 connexins in cancer metastasis, chemoresistance and
clinical application. J Biomed Sci. 2019;26:8.
32. Cucullo L, Couraud PO, Weksler B, et al. Immortalized human doi: 10.1186/s12929-019-0497-x
brain endothelial cells and flow-based vascular modeling: a
marriage of convenience for rational neurovascular studies. 44. Yunker CK, Golembieski W, Lemke N, et al. SPARC-induced
J Cereb Blood Flow Metab. 2008;28:312-328. increase in glioma matrix and decrease in vascularity are
doi: 10.1038/sj.jcbfm.9600525 associated with reduced VEGF expression and secretion. Int
J Cancer. 2008;122(12):2735-2743.
33. Tabet A, Mommer S, Vigil JA, Hallou C, Bulstrode H, doi: 10.1002/ijc.23450
Scherman OA. Mechanical characterization of human brain
tissue and soft dynamic gels exhibiting electromechanical 45. Arnold SA, Brekken RA. SPARC: a matricellular regulator of
neuro-mimicry. Adv Healthc Mater. 2019;8(10):e1900068. tumorigenesis. J Cell Commun Signal. 2009;3(3-4):255-273.
doi: 10.1002/adhm.201900068 doi: 10.1007/s12079-009-0072-4
34. Fallenstein GT, Hulce VD, Melvin JW. Dynamic mechanical 46. Sun Y, Li Q, Liu W, Zhang B. Relationship between fibrinogen
properties of human brain tissue. J Biomech. 1969;2(3): level and its regulatory gene with Alzheimer’s disease and
217-226. vascular dementia. J Int Med Res. 2020;48(2):211476875.
doi: 10.1016/0021-9290(69)90079-7 doi: 10.1177/0300060520902578
35. Dzikowski L, Mirzaei R, Sarkar S, et al. Fibrinogen in 47. Golanov EV, Sharpe MA, Regnier-Golanov AS, Del Zoppo
the glioblastoma microenvironment contributes to the GJ, Baskin DS, Britz GW. Fibrinogen chains intrinsic to the
invasiveness of brain tumor-initiating cells. Brain Pathol. brain. Front Neurosci. 2019;13:541.
2021;31(5):e12947. doi: 10.3389/fnins.2019.00541
doi: 10.1111/bpa.12947 48. Xie Y, He L, Lugano R, et al. Key molecular alterations in
36. Luckenbill-Edds L. Laminin and the mechanism of neuronal endothelial cells in human glioblastoma uncovered through
outgrowth. Brain Res Brain Res Rev. 1997;23(1-2):1-27. single-cell RNA sequencing. JCI Insight. 2021;6(15):e150861.
doi: 10.1016/S0165-0173(96)00013-6 doi: 10.1172/jci.insight.150861
37. Le LV, Mkrtschjan MA, Russell B, Desai TA. Hang on tight: 49. Tanase C, Enciu AM, Codrici E, et al. Fatty acids, CD36,
reprogramming the cell with microstructural cues. Biomed thrombospondin-1, and CD47 in glioblastoma: together
Microdevices. 2019;21(2):43. and/or separately? Int J Mol Sci. 2022;23(2):604.
doi: 10.1007/s10544-019-0394-9 doi: 10.3390/ijms23020604
Volume 10 Issue 3 (2024) 357 doi: 10.36922/ijb.1684

