Page 365 - IJB-10-3
P. 365

International Journal of Bioprinting                          hNVU chip for brain modeling and drug screening




            27.  Cho WW, Ahn M, Kim BS, Cho DW. Blood-lymphatic   38.  Pizzo AM, Kokini K, Vaughn LC, Waisner BZ, Voytik-
               integrated  system  with  heterogeneous  melanoma  Harbin SL. Extracellular matrix (ECM) microstructural
               spheroids via in-bath three-dimensional bioprinting for   composition regulates local cell-ECM biomechanics and
               modeling of combinational targeted therapy.  Adv Sci.   fundamental fibroblast behavior:  a multidimensional
               2022;9(29):e2202093.                               perspective. J Appl Physiol. 2005;98(5):1909-1921.
               doi: 10.1002/advs.202202093                        doi: 10.1152/japplphysiol.01137.2004
            28.  Potjewyd G, Moxon S, Wang T, Domingos M, Hooper   39.  Roeder BA.  The Influence of Extracellular Matrix (ECM)
               NM. Tissue engineering 3D neurovascular units: a   Microstructure on the Macro and Microlevel Biomechanical
               biomaterials and bioprinting perspective. Trends Biotechnol.   Behavior of Tissue Constructs and Cell-ECM Interactions.
               2018;36(4):457-472.                                Dissertation. Purdue University; 2003.
               doi: 10.1016/j.tibtech.2018.01.003
                                                               40.  Mokkapati  S,  Fleger-Weckmann  A,  Bechtel  M,  et  al.
            29.  Neufeld L, Yeini E, Reisman N, et al. Microengineered   Basement membrane  deposition of nidogen 1  but  not
               perfusable 3D-bioprinted glioblastoma model for in   nidogen 2 requires the nidogen binding module of the
               vivo mimicry of tumor microenvironment.  Sci Adv.   laminin gamma1 chain.  J Biol Chem. 2011;286(3):1911-
               2021;7(34):eabi9119.                               1918.
               doi: 10.1126/sciadv.abi9119                        doi: 10.1074/jbc.M110.149864
            30.  Nothdurfter D, Ploner C, Coraça-Huber DC, et al. 3D   41.  Yurchenco PD, Patton BL. Developmental and pathogenic
               bioprinted, vascularized neuroblastoma tumor environment   mechanisms of basement membrane assembly. Curr Pharm
               in fluidic chip devices for precision medicine drug testing.   Des. 2009;15(12):1277-1294.
               Biofabrication. 2022;14(3):035002.                 doi: 10.2174/138161209787846766
               doi: 10.1088/1758-5090/ac5fb7
                                                               42.  Wang LB, Karpova A, Gritsenko MA, et al. Proteogenomic
            31.  Appelt-Menzel A, Cubukova A, Günther K, et al.   and metabolomic characterization of human glioblastoma.
               Establishment of  a  human  blood‒brain  barrier  coculture   Cancer Cell. 2021;39(4):509-528.e20.
               model mimicking the neurovascular unit using induced      doi: 10.1016/j.ccell.2021.01.006
               pluri- and multipotent stem cells.  Stem Cell Rep.
               2017;8(4):894-906.                              43.  Wu JI, Wang LH. Emerging roles of gap junction proteins
               doi: 10.1016/j.stemcr.2017.02.021                  connexins in cancer metastasis, chemoresistance and
                                                                  clinical application. J Biomed Sci. 2019;26:8.
            32.  Cucullo L, Couraud PO, Weksler B, et al. Immortalized human      doi: 10.1186/s12929-019-0497-x
               brain endothelial cells and flow-based vascular modeling: a
               marriage of convenience for rational neurovascular studies.   44.  Yunker CK, Golembieski W, Lemke N, et al. SPARC-induced
               J Cereb Blood Flow Metab. 2008;28:312-328.         increase in glioma matrix and decrease in vascularity are
               doi: 10.1038/sj.jcbfm.9600525                      associated with reduced VEGF expression and secretion. Int
                                                                  J Cancer. 2008;122(12):2735-2743.
            33.  Tabet A, Mommer S, Vigil JA, Hallou C, Bulstrode H,      doi: 10.1002/ijc.23450
               Scherman OA. Mechanical characterization of human brain
               tissue and soft dynamic gels exhibiting electromechanical   45.  Arnold SA, Brekken RA. SPARC: a matricellular regulator of
               neuro-mimicry. Adv Healthc Mater. 2019;8(10):e1900068.  tumorigenesis. J Cell Commun Signal. 2009;3(3-4):255-273.
               doi: 10.1002/adhm.201900068                        doi: 10.1007/s12079-009-0072-4
            34.  Fallenstein GT, Hulce VD, Melvin JW. Dynamic mechanical   46.  Sun Y, Li Q, Liu W, Zhang B. Relationship between fibrinogen
               properties  of  human  brain  tissue.  J Biomech.  1969;2(3):   level and its regulatory gene with Alzheimer’s disease and
               217-226.                                           vascular dementia. J Int Med Res. 2020;48(2):211476875.
               doi: 10.1016/0021-9290(69)90079-7                  doi: 10.1177/0300060520902578
            35.  Dzikowski L, Mirzaei  R, Sarkar S, et  al. Fibrinogen in   47.  Golanov EV, Sharpe MA, Regnier-Golanov AS, Del Zoppo
               the glioblastoma microenvironment contributes to the   GJ, Baskin DS, Britz GW. Fibrinogen chains intrinsic to the
               invasiveness  of  brain  tumor-initiating  cells.  Brain Pathol.   brain. Front Neurosci. 2019;13:541.
               2021;31(5):e12947.                                 doi: 10.3389/fnins.2019.00541
               doi: 10.1111/bpa.12947                          48.  Xie Y, He L, Lugano R, et al. Key molecular alterations in
            36.  Luckenbill-Edds L. Laminin and the mechanism of neuronal   endothelial cells in human glioblastoma uncovered through
               outgrowth. Brain Res Brain Res Rev. 1997;23(1-2):1-27.  single-cell RNA sequencing. JCI Insight. 2021;6(15):e150861.
               doi: 10.1016/S0165-0173(96)00013-6                 doi: 10.1172/jci.insight.150861
            37.  Le LV, Mkrtschjan MA, Russell B, Desai TA. Hang on tight:   49.  Tanase C, Enciu AM, Codrici E, et al. Fatty acids, CD36,
               reprogramming the cell with microstructural cues. Biomed   thrombospondin-1, and CD47 in glioblastoma: together
               Microdevices. 2019;21(2):43.                       and/or separately? Int J Mol Sci. 2022;23(2):604.
               doi: 10.1007/s10544-019-0394-9                     doi: 10.3390/ijms23020604


            Volume 10 Issue 3 (2024)                       357                                doi: 10.36922/ijb.1684
   360   361   362   363   364   365   366   367   368   369   370