Page 515 - IJB-10-3
P. 515

International Journal of Bioprinting                                 3D printing microgroove nerve conduits




               polycaprolactone/poly (l-lactic-co-glycolic acid) scaffolds   55.  Dong J, Liu J, Li X, Liang Q, Xu X. Relationship between the
               with and without microgrooves for tissue engineering   Young’s modulus and the crystallinity of cross‐linked poly
               applications.  J Biomed Mater Res Part A. 2018;106(6):   (ε‐caprolactone) as an immobilization membrane for cancer
               1522-1534.                                         radiotherapy. Glob Chall. 2020;4(8):2000008.
               doi: 10.1002/jbm.a.36355                           doi: 10.1002/gch2.202000008
            50.  Carmona VB, Corrêa AC, Marconcini JM, Mattoso   56.  Borschel GH, Kia KF, Kuzon WM, Jr., Dennis RG.
               LHC. Properties of a biodegradable ternary blend of   Mechanical properties of acellular peripheral nerve. J Surg
               thermoplastic starch (TPS), poly (ε-caprolactone)(PCL)   Res. 2003;114(2):133-139.
               and poly (lactic acid)(PLA).  J Polym Environ. 2015;23(1):      doi: 10.1016/s0022-4804(03)00255-5
               83-89.                                          57.  Rydevik BL, Kwan MK, Myers RR, et al. An in vitro
               doi: 10.1007/s10924-014-0666-7                     mechanical and histological study of acute stretching on
            51.  Vieille B, Albouy W, Chevalier L, Taleb L. About the   rabbit tibial nerve. J Orthop Res. 1990;8(5):694-701.
               influence of stamping on thermoplastic-based composites      doi: 10.1002/jor.1100080511
               for aeronautical applications.  Compos Part B: Eng.   58.  Kerns J, Piponov H, Helder C, Amirouche F, Solitro G,
               2013;45(1):821-834.                                Gonzalez M. Mechanical properties of the human  tibial
               doi: 10.1016/j.compositesb.2012.07.047             and peroneal nerves following stretch with histological
            52.  Kostakova E, Mészáros L, Maskova G, Blazkova L, Turcsan   correlations. Anat Rec. 2019;302(11):2030-2039.
               T, Lukas D. Crystallinity of electrospun and centrifugal spun      doi: 10.1002/ar.24250
               polycaprolactone fibers: a comparative study. J Nanomater.   59.  Rahmati M, Silva EA, Reseland JE, Heyward CA, Haugen
               2017;1-9.                                          HJ. Biological responses to physicochemical properties of
               doi: 10.1155/2017/8952390                          biomaterial surface. Chem Soc Rev. 2020;49(15):5178-5224.
            53.  Huang B, Wang Y, Vyas C, Bartolo P. Crystal growth of 3D      doi: 10.1039/D0CS00103A
               poly(ε-caprolactone) based bone scaffolds and its effects on   60.  Patr T, Glória A. Mechanical and biological behaviour of PCL
               the physical properties and cellular interactions.  Adv Sci.   and PCL/PLA scaffolds for tissue engineering applications.
               2023;10(1):2203183.                                Chem Eng Trans. 2013;32:1645-1650.
               doi: 10.1002/advs.202203183                        doi: 10.3303/CET1332275
            54.  Sun M, Downes S. Physicochemical characterisation of   61.  Zhang H, Guo J, Wang Y, Shang L, Chai R, Zhao Y.
               novel ultra-thin biodegradable scaffolds for peripheral nerve   Natural polymer‐derived bioscaffolds for peripheral nerve
               repair. J Mater Sci Mater Med. 2009;20(5):1181-1192.  regeneration. Adv Funct Mater. 2022;32(41):2203829.
               doi: 10.1007/s10856-008-3671-3                     doi: 10.1002/adfm.202203829




































            Volume 10 Issue 3 (2024)                       507                                doi: 10.36922/ijb.2725
   510   511   512   513   514   515   516   517   518   519   520