Page 117 - IJB-4-1
P. 117

Sriphutkiat Y, et al


            37.   Collins  D  J,  Morahan  B,  Garcia-Bustos  J,  et  al.,  2015,   radiation.  Lab  Chip,  11(23):  4072–4080.  http://dx.doi.
                 Two-dimensional single-cell patterning with one cell per   org/10.1039/c1lc20687g
                 well driven by surface acoustic waves. Nat Commun, 6:   50.  Nama  N,  Barnkob  R,  Mao  Z,  et  al.,  2015,  Numerical
                 8686. http://dx.doi.org/10.1038/ncomms9686        study of acoustophoretic motion of particles in a PDMS
            38.  Wiklund M, 2012, Acoustofluidics 12: Biocompatibility   microchannel driven by surface acoustic waves. Lab Chip,
                 and cell viability in microfluidic acoustic resonators. Lab   15(12): 2700–2709. http://dx.doi.org/10.1039/c5lc00231a
                 Chip, 12(11): 2018–2028. http://dx.doi.org/10.1039/c2lc4   51.  Burguillos M A, Magnusson C, Nordin M, et al., 2013,
                 0201g                                             Microchannel  acoustophoresis  does  not  impact  survival
            39.  Ohlin  M,  Iranmanesh  I,  Christakou  A  E,  et  al.,  2015,   or function of microglia, leukocytes or tumor cells. Plos
                 Temperature-controlled  MPa-pressure  ultrasonic  cell   One,  8:  e64233.  http://dx.doi.org/10.1371/journal.pone.
                 manipulation  in  a  microfluidic  chip.  Lab  Chip,  15(16):   0064233
                 3341–3349. http://dx.doi.org/10.1039/c5lc00490j   52.  Ding  X  Y,  Shi  J  J,  Lin  S  C  S,  et  al.,  2012,  Tunable
            40.  Glynne-Jones  P,  Hill  M,  2013,  Acoustofluidics  23:   patterning  of  microparticles  and  cells  using  standing
                 Acoustic manipulation combined with other force fields.   surface  acoustic  waves.  Lab  Chip,  12(14):  2491–2497.
                 Lab  Chip,  13(6):  1003–1010.  http://dx.doi.org/10.1039/   http://dx.doi.org/10.1039/c2lc21021e
                 c3lc41369a                                    53.  Devendran  C,  Albrecht  T,  Brenker  J,  et  al.,  2016,  The
            41.  Bruus H, 2012, Acoustofluidics 7: The acoustic radiation   importance  of  travelling  wave  components  in  standing
                 force  on  small  particles.  Lab  Chip,  12(6):  1014–1021.   surface  acoustic  wave  (SSAW)  systems.  Lab  Chip,
                 http://dx.doi.org/10.1039/c2lc21068a              16(19): 3756–3766. http://dx.doi.org/10.1039/c6lc00798h
            42.   Sriphutkiat Y, Zhou Y, 2017, Particle manipulation using   54.   Squires  T,  2005,  Microfluidics:  Fluid  physics  at  the
                 standing  acoustic  waves  in  the  microchannel  at  dual-  nanoliter scale. Rev Mod Phys, 7(3): 977–1026. http://dx.
                 frequency excitation: Effect of power ratio. Sensor Actuat   doi.org/10.1103/RevModPhys.77.977
                 A  Phys,  263:  521–529.  http://dx.doi.org/10.1016/j.sna.   55.   Lee P J, Hung P J, Rao V M, et al., 2006, Nanoliter scale
                 2017.07.023                                       microbioreactor  array  for  quantitative  cell  biology.
            43.   Burgess A, Vigneron S, Brioudes E, et al., 2010, Loss of
                 human Greatwall results in G2 arrest and multiple mitotic   Biotechnol Bioeng, 94(1): 5–14. http://dx.doi.org/10.100
                                                                   2/bit.20745
                 defects  due  to  deregulation  of  the  cyclin  B-Cdc2/PP2A
                 balance.  Pro  Nati  Acad  Sci,  107(28):  12564–12569.   56.   Wang  Z,  Kim  M  C,  Marquez  M,  et  al.,  2007,  High-
                 http://dx.doi.org/10.1073/pnas.0914191107         density microfluidic arrays for cell cytotoxicity analysis.
            44.   McCloy R A, Rogers S, Caldon C E, et al., 2014, Partial   Lab  Chip,  7(6):  740–745.  http://dx.doi.org/10.1039/b61
                 inhibition  of  Cdk1  in  G2  phase  overrides  the  SAC  and   8734j
                 decouples mitotic events. Cell Cycle, 13(9): 1400–1412.   57.   Melchels F P, Barradas A M, van Blitterswijk C A, et al.,
                 http://dx.doi.org/10.4161/cc.28401                2010,  Effects  of  the  architecture  of  tissue  engineering
            45.  Cui  X,  Hartanto  Y,  Zhang  H,  2017,  Advances  in   scaffolds  on  cell  seeding  and  culturing.  Acta  Biomater,
                 multicellular spheroids formation. J R Soc Interface, 14:   6(11):  4208–4217.  http://dx.doi.org/10.1016/j.actbio.20
                 20160877.                                         10.06.012
            46.  Chen Y, Li P, Huang P H, et al., 2014, Rare cell isolation   58   Lichtner R B, Schirrmacher V, 1990, Cellular distribution
                 and analysis in microfluidics. Lab Chip, 14(4): 626–645.   and  biological  activity  of  epidermal  growth  factor
                 http://dx.doi.org/10.1039/c3lc90136j              receptors in A431 cells are influenced by cell-cell contact.
            47.  Ding  X,  Peng  Z,  Lin S  C,  et  al., 2014,  Cell  separation   J  Cell  Physiol,  144(2):  303–312.  http://dx.doi.org/10.10
                 using  tilted-angle  standing  surface  acoustic  waves.  Pro   02/ jcp.1041440217
                 Nati Acad Sci USA, 111(36): 12992–12997. http://dx.doi.   59.   Henry  C,  Minier  J  P,  Lefevre  G,  2012,  Towards  a
                 org/10.1073/pnas.1413325111                       description  of  particulate  fouling:  From  single  particle
            48.  Sriphutkiat Y, Zhou Y, 2017, Particle accumulation in a   deposition  to  clogging.  Adv  Colloid  Interface Sci, 185–
                 microchannel  and  its  reduction  by  a  standing  surface   186: 34–76. http://dx.doi.org/10.1016/j.cis.2012.10.001
                 acoustic wave (SSAW). Sensors, 17(1): 106. http://dx.doi.   60.   Mustin  B,  Stoeber  B,  2016,  Single  layer  deposition  of
                 org/10.3390/s17010106                             polystyrene  particles  onto  planar  polydimethylsiloxane
            49.  Hartono  D,  Liu  Y,  Tan  P  L,  et  al.,  2011,  On-chip   substrates. Langmuir, 32(1): 88–101. http://dx.doi.org/10.
                 measurements  of  cell  compressibility  via  acoustic   1021/ acs. langmuir.5b02914

                                       International Journal of Bioprinting (2018)–Volume 4, Issue 1       11
   112   113   114   115   116   117   118   119   120