Page 117 - IJB-4-1
P. 117
Sriphutkiat Y, et al
37. Collins D J, Morahan B, Garcia-Bustos J, et al., 2015, radiation. Lab Chip, 11(23): 4072–4080. http://dx.doi.
Two-dimensional single-cell patterning with one cell per org/10.1039/c1lc20687g
well driven by surface acoustic waves. Nat Commun, 6: 50. Nama N, Barnkob R, Mao Z, et al., 2015, Numerical
8686. http://dx.doi.org/10.1038/ncomms9686 study of acoustophoretic motion of particles in a PDMS
38. Wiklund M, 2012, Acoustofluidics 12: Biocompatibility microchannel driven by surface acoustic waves. Lab Chip,
and cell viability in microfluidic acoustic resonators. Lab 15(12): 2700–2709. http://dx.doi.org/10.1039/c5lc00231a
Chip, 12(11): 2018–2028. http://dx.doi.org/10.1039/c2lc4 51. Burguillos M A, Magnusson C, Nordin M, et al., 2013,
0201g Microchannel acoustophoresis does not impact survival
39. Ohlin M, Iranmanesh I, Christakou A E, et al., 2015, or function of microglia, leukocytes or tumor cells. Plos
Temperature-controlled MPa-pressure ultrasonic cell One, 8: e64233. http://dx.doi.org/10.1371/journal.pone.
manipulation in a microfluidic chip. Lab Chip, 15(16): 0064233
3341–3349. http://dx.doi.org/10.1039/c5lc00490j 52. Ding X Y, Shi J J, Lin S C S, et al., 2012, Tunable
40. Glynne-Jones P, Hill M, 2013, Acoustofluidics 23: patterning of microparticles and cells using standing
Acoustic manipulation combined with other force fields. surface acoustic waves. Lab Chip, 12(14): 2491–2497.
Lab Chip, 13(6): 1003–1010. http://dx.doi.org/10.1039/ http://dx.doi.org/10.1039/c2lc21021e
c3lc41369a 53. Devendran C, Albrecht T, Brenker J, et al., 2016, The
41. Bruus H, 2012, Acoustofluidics 7: The acoustic radiation importance of travelling wave components in standing
force on small particles. Lab Chip, 12(6): 1014–1021. surface acoustic wave (SSAW) systems. Lab Chip,
http://dx.doi.org/10.1039/c2lc21068a 16(19): 3756–3766. http://dx.doi.org/10.1039/c6lc00798h
42. Sriphutkiat Y, Zhou Y, 2017, Particle manipulation using 54. Squires T, 2005, Microfluidics: Fluid physics at the
standing acoustic waves in the microchannel at dual- nanoliter scale. Rev Mod Phys, 7(3): 977–1026. http://dx.
frequency excitation: Effect of power ratio. Sensor Actuat doi.org/10.1103/RevModPhys.77.977
A Phys, 263: 521–529. http://dx.doi.org/10.1016/j.sna. 55. Lee P J, Hung P J, Rao V M, et al., 2006, Nanoliter scale
2017.07.023 microbioreactor array for quantitative cell biology.
43. Burgess A, Vigneron S, Brioudes E, et al., 2010, Loss of
human Greatwall results in G2 arrest and multiple mitotic Biotechnol Bioeng, 94(1): 5–14. http://dx.doi.org/10.100
2/bit.20745
defects due to deregulation of the cyclin B-Cdc2/PP2A
balance. Pro Nati Acad Sci, 107(28): 12564–12569. 56. Wang Z, Kim M C, Marquez M, et al., 2007, High-
http://dx.doi.org/10.1073/pnas.0914191107 density microfluidic arrays for cell cytotoxicity analysis.
44. McCloy R A, Rogers S, Caldon C E, et al., 2014, Partial Lab Chip, 7(6): 740–745. http://dx.doi.org/10.1039/b61
inhibition of Cdk1 in G2 phase overrides the SAC and 8734j
decouples mitotic events. Cell Cycle, 13(9): 1400–1412. 57. Melchels F P, Barradas A M, van Blitterswijk C A, et al.,
http://dx.doi.org/10.4161/cc.28401 2010, Effects of the architecture of tissue engineering
45. Cui X, Hartanto Y, Zhang H, 2017, Advances in scaffolds on cell seeding and culturing. Acta Biomater,
multicellular spheroids formation. J R Soc Interface, 14: 6(11): 4208–4217. http://dx.doi.org/10.1016/j.actbio.20
20160877. 10.06.012
46. Chen Y, Li P, Huang P H, et al., 2014, Rare cell isolation 58 Lichtner R B, Schirrmacher V, 1990, Cellular distribution
and analysis in microfluidics. Lab Chip, 14(4): 626–645. and biological activity of epidermal growth factor
http://dx.doi.org/10.1039/c3lc90136j receptors in A431 cells are influenced by cell-cell contact.
47. Ding X, Peng Z, Lin S C, et al., 2014, Cell separation J Cell Physiol, 144(2): 303–312. http://dx.doi.org/10.10
using tilted-angle standing surface acoustic waves. Pro 02/ jcp.1041440217
Nati Acad Sci USA, 111(36): 12992–12997. http://dx.doi. 59. Henry C, Minier J P, Lefevre G, 2012, Towards a
org/10.1073/pnas.1413325111 description of particulate fouling: From single particle
48. Sriphutkiat Y, Zhou Y, 2017, Particle accumulation in a deposition to clogging. Adv Colloid Interface Sci, 185–
microchannel and its reduction by a standing surface 186: 34–76. http://dx.doi.org/10.1016/j.cis.2012.10.001
acoustic wave (SSAW). Sensors, 17(1): 106. http://dx.doi. 60. Mustin B, Stoeber B, 2016, Single layer deposition of
org/10.3390/s17010106 polystyrene particles onto planar polydimethylsiloxane
49. Hartono D, Liu Y, Tan P L, et al., 2011, On-chip substrates. Langmuir, 32(1): 88–101. http://dx.doi.org/10.
measurements of cell compressibility via acoustic 1021/ acs. langmuir.5b02914
International Journal of Bioprinting (2018)–Volume 4, Issue 1 11

