Page 110 - IJB-10-4
P. 110
International Journal of Bioprinting Biomaterials with antibacterial agents
applications: a mechanism of action. Nanomaterials (Basel). doi: 10.3390/polym12081800
2020;10(8):1566. 100. Später T, Mariyanats AO, Syachina MA, et al. In vitro
doi: 10.3390/nano10081566
and in vivo analysis of adhesive, anti-inflammatory, and
89. Rybka M, Mazurek Ł, Konop M. Beneficial effect of wound proangiogenic properties of novel 3D printed hyaluronic
dressings containing silver and silver nanoparticles in wound acid glycidyl methacrylate hydrogel scaffolds for tissue
healing-from experimental studies to clinical practice. Life engineering. ACS Biomater Sci Eng. 2020;6(10):5744-5757.
(Basel). 2022;13(1):69. doi: 10.1021/acsbiomaterials.0c00741
doi: 10.3390/life13010069
101. Fernando IPS, Lee W, Han EJ, Ahn G. Alginate-based
90. Fadilah NIM, Ahmat N, Hao LQ, et al. Biological safety nanomaterials: fabrication techniques, properties, and
assessments of high-purified ovine collagen type i biomatrix applications. Chem Eng J. 2020;391:123823.
for future therapeutic product: International Organisation doi: 10.1016/j.cej.2019.123823
for Standardisation (ISO) and Good Laboratory Practice 102. Li Y, Xu Z, Wang J, Pei X, Chen J, Wan Q. Alginate-based
(GLP) Settings. Polymers (Basel). 2023;15(11):2436. biomaterial-mediated regulation of macrophages in bone
doi: 10.3390/polym15112436
tissue engineering. Int J Biol Macromol. 2023:230;123246.
91. Shoulders MD, Raines RT. Collagen structure and stability. doi: 10.1016/j.ijbiomac.2023.123246
Annu Rev Biochem. 2009;78:929-958. 103. Fayyazbakhsh F, Khayat MJ, Leu MC. 3D-printed gelatin-
doi: 10.1146/annurev.biochem.77.032207.120833
alginate hydrogel dressings for burn wound healing: a
92. Baltazar T, Merola J, Catarino C, et al. Three dimensional comprehensive study. Int J Bioprint. 2022;8(4):618.
bioprinting of a vascularized and perfusable skin graft using doi: 10.18063/ijb.v8i4.618
human keratinocytes, fibroblasts, pericytes, and endothelial 104. Dai H, Huang Y, Huang H. Eco-friendly polyvinyl alcohol/
cells. Tissue Eng Part A. 2020;26(5–6):227-238. carboxymethyl cellulose hydrogels reinforced with graphene
doi: 10.1089/ten.tea.2019.0201
oxide and bentonite for enhanced adsorption of methylene
93. Haruna K, Obot I, Ankah N, Sorour A, Saleh T. Gelatin: blue. Carbohydr Polym. 2018;185:1-11.
a green corrosion inhibitor for carbon steel in oil well doi: 10.1016/j.carbpol.2017.12.073
acidizing environment. J Mol Liquids. 2018;264:515-525. 105. Karimi A, Navidbakhsh M. Mechanical properties of PVA
doi: 10.1016/j.molliq.2018.05.058
material for tissue engineering applications. Mater Technol.
94. Masri S, Maarof M, Abd Aziz I, Idrus R, Fauzi MB. Performance 2014;29(2):90-100.
of hybrid gelatin-PVA bioinks integrated with genipin through doi: 10.1179/1753555713Y.0000000115
extrusion-based 3D bioprinting: an in vitro evaluation using 106. Harmanci S, Dutta A, Cesur S, et al. Production of 3D
human dermal fibroblasts. Int J Bioprint. 2023;9(3):677. printed bi-layer and tri-layer sandwich scaffolds with
doi: 10.18063/ijb.677
polycaprolactone and poly (vinyl alcohol)-metformin
95. Mourya V, Inamdar NN. Chitosan-modifications and towards diabetic wound healing. Polymers. 2022;14(23):5306.
applications: opportunities galore. React Funct Polym. doi: 10.3390/polym14235306
2008;68(6):1013-1051. 107. Casalini T, Rossi F, Castrovinci A, Perale G. A perspective on
doi: 10.1016/j.reactfunctpolym.2008.03.002
polylactic acid-based polymers use for nanoparticles synthesis
96. Aranaz I, Alcántara AR, Civera MC, et al. Chitosan: an and applications. Front Bioeng Biotechnol. 2019;7:259.
overview of its properties and applications. Polymers (Basel). doi: 10.3389/fbioe.2019.00259
2021;13(19):56. 108. Ranakoti L, Gangil B, Mishra SK, et al. Critical review
doi: 10.3390/polym13193256
on polylactic acid: properties, structure, processing,
97. Intini C, Elviri L, Cabral J, et al. 3D-printed chitosan-based biocomposites, and nanocomposites. Materials (Basel).
scaffolds: an in vitro study of human skin cell growth and an 2022;15(12):4312.
in-vivo wound healing evaluation in experimental diabetes doi: 10.3390/ma15124312
in rats. Carbohydr Polym. 2018;199:593-602. 109. Domínguez-Robles J, Martin NK, Fong ML, et al.
doi: 10.1016/j.carbpol.2018.07.057
Antioxidant PLA composites containing lignin for 3d
98. Gupta RC, Lall R, Srivastava A, Sinha A. Hyaluronic acid: printing applications: a potential material for healthcare
molecular mechanisms and therapeutic trajectory. Front Vet applications. Pharmaceutics. 2019;11(4):165.
Sci. 2019;6:192. doi: 10.3390/pharmaceutics11040165
doi: 10.3389/fvets.2019.00192
110. Rahmani S, Maroufkhani M, Mohammadzadeh-Komuleh
99. Snetkov P, Zakharova K, Morozkina S, Olekhnovich R, S, Khoubi-Arani Z. Chapter 7 - Polymer nanocomposites
Uspenskaya M. Hyaluronic acid: the influence of molecular for biomedical applications. In: Barhoum A, Jeevanandam
weight on structural, physical, physico-chemical, and J, Danquah MK, eds. Fundamentals of Bionanomaterials.
degradable properties of biopolymer. Polymers (Basel). Elsevier; 2022:175-215.
2020;12(8):1800. doi: 10.1016/B978-0-12-824147-9.00007-8
Volume 10 Issue 4 (2024) 102 doi: 10.36922/ijb.3372

