Page 110 - IJB-10-4
P. 110

International Journal of Bioprinting                                   Biomaterials with antibacterial agents




               applications: a mechanism of action. Nanomaterials (Basel).      doi: 10.3390/polym12081800
               2020;10(8):1566.                                100. Später T, Mariyanats AO, Syachina MA, et al. In vitro
               doi: 10.3390/nano10081566
                                                                  and in vivo analysis of adhesive, anti-inflammatory, and
            89.  Rybka M, Mazurek Ł, Konop M. Beneficial effect of wound   proangiogenic properties of novel 3D printed hyaluronic
               dressings containing silver and silver nanoparticles in wound   acid glycidyl methacrylate hydrogel scaffolds for tissue
               healing-from experimental studies to clinical practice. Life   engineering. ACS Biomater Sci Eng. 2020;6(10):5744-5757.
               (Basel). 2022;13(1):69.                            doi: 10.1021/acsbiomaterials.0c00741
               doi: 10.3390/life13010069
                                                               101. Fernando IPS, Lee W, Han EJ, Ahn G. Alginate-based
            90.  Fadilah  NIM,  Ahmat  N,  Hao  LQ,  et  al.  Biological  safety   nanomaterials: fabrication techniques,  properties,  and
               assessments of high-purified ovine collagen type i biomatrix   applications. Chem Eng J. 2020;391:123823.
               for future therapeutic product: International Organisation      doi: 10.1016/j.cej.2019.123823
               for Standardisation (ISO) and Good Laboratory Practice   102. Li Y, Xu Z, Wang J, Pei X, Chen J, Wan Q. Alginate-based
               (GLP) Settings. Polymers (Basel). 2023;15(11):2436.  biomaterial-mediated regulation of macrophages in bone
               doi: 10.3390/polym15112436
                                                                  tissue engineering. Int J Biol Macromol. 2023:230;123246.
            91.  Shoulders MD, Raines RT. Collagen structure and stability.      doi: 10.1016/j.ijbiomac.2023.123246
               Annu Rev Biochem. 2009;78:929-958.              103. Fayyazbakhsh F, Khayat MJ, Leu MC. 3D-printed gelatin-
               doi: 10.1146/annurev.biochem.77.032207.120833
                                                                  alginate hydrogel dressings for burn wound healing: a
            92.  Baltazar T, Merola J, Catarino C, et al. Three dimensional   comprehensive study. Int J Bioprint. 2022;8(4):618.
               bioprinting of a vascularized and perfusable skin graft using      doi: 10.18063/ijb.v8i4.618
               human keratinocytes, fibroblasts, pericytes, and endothelial   104. Dai H, Huang Y, Huang H. Eco-friendly polyvinyl alcohol/
               cells. Tissue Eng Part A. 2020;26(5–6):227-238.    carboxymethyl cellulose hydrogels reinforced with graphene
               doi: 10.1089/ten.tea.2019.0201
                                                                  oxide and bentonite for enhanced adsorption of methylene
            93.  Haruna K, Obot I, Ankah N, Sorour A, Saleh T. Gelatin:   blue. Carbohydr Polym. 2018;185:1-11.
               a green corrosion  inhibitor for carbon  steel in oil well      doi: 10.1016/j.carbpol.2017.12.073
               acidizing environment. J Mol Liquids. 2018;264:515-525.  105. Karimi A, Navidbakhsh M. Mechanical properties of PVA
               doi: 10.1016/j.molliq.2018.05.058
                                                                  material for tissue engineering applications. Mater Technol.
            94.  Masri S, Maarof M, Abd Aziz I, Idrus R, Fauzi MB. Performance   2014;29(2):90-100.
               of hybrid gelatin-PVA bioinks integrated with genipin through      doi: 10.1179/1753555713Y.0000000115
               extrusion-based 3D bioprinting: an in vitro evaluation using   106. Harmanci  S,  Dutta A,  Cesur  S,  et  al.  Production  of  3D
               human dermal fibroblasts. Int J Bioprint. 2023;9(3):677.  printed bi-layer and tri-layer sandwich scaffolds with
               doi: 10.18063/ijb.677
                                                                  polycaprolactone and poly (vinyl alcohol)-metformin
            95.  Mourya V, Inamdar NN. Chitosan-modifications and   towards diabetic wound healing. Polymers. 2022;14(23):5306.
               applications: opportunities galore.  React Funct Polym.      doi: 10.3390/polym14235306
               2008;68(6):1013-1051.                           107. Casalini T, Rossi F, Castrovinci A, Perale G. A perspective on
               doi: 10.1016/j.reactfunctpolym.2008.03.002
                                                                  polylactic acid-based polymers use for nanoparticles synthesis
            96.  Aranaz I, Alcántara AR, Civera MC, et al. Chitosan: an   and applications. Front Bioeng Biotechnol. 2019;7:259.
               overview of its properties and applications. Polymers (Basel).      doi: 10.3389/fbioe.2019.00259
               2021;13(19):56.                                 108. Ranakoti L, Gangil B, Mishra SK, et al. Critical review
               doi: 10.3390/polym13193256
                                                                  on polylactic acid: properties, structure, processing,
            97.  Intini C, Elviri L, Cabral J, et al. 3D-printed chitosan-based   biocomposites, and nanocomposites.  Materials (Basel).
               scaffolds: an in vitro study of human skin cell growth and an   2022;15(12):4312.
               in-vivo wound healing evaluation in experimental diabetes      doi: 10.3390/ma15124312
               in rats. Carbohydr Polym. 2018;199:593-602.     109. Domínguez-Robles J, Martin NK, Fong ML, et al.
               doi: 10.1016/j.carbpol.2018.07.057
                                                                  Antioxidant PLA composites containing lignin for 3d
            98.  Gupta RC, Lall R, Srivastava A, Sinha A. Hyaluronic acid:   printing applications: a potential material for healthcare
               molecular mechanisms and therapeutic trajectory. Front Vet   applications. Pharmaceutics. 2019;11(4):165.
               Sci. 2019;6:192.                                   doi: 10.3390/pharmaceutics11040165
               doi: 10.3389/fvets.2019.00192
                                                               110. Rahmani S, Maroufkhani M, Mohammadzadeh-Komuleh
            99.  Snetkov P, Zakharova K, Morozkina S, Olekhnovich R,   S, Khoubi-Arani Z. Chapter 7 - Polymer nanocomposites
               Uspenskaya M. Hyaluronic acid: the influence of molecular   for biomedical applications. In: Barhoum A, Jeevanandam
               weight on structural, physical, physico-chemical, and   J, Danquah MK, eds.  Fundamentals of Bionanomaterials.
               degradable properties of biopolymer.  Polymers  (Basel).   Elsevier; 2022:175-215.
               2020;12(8):1800.                                   doi: 10.1016/B978-0-12-824147-9.00007-8

            Volume 10 Issue 4 (2024)                       102                                doi: 10.36922/ijb.3372
   105   106   107   108   109   110   111   112   113   114   115