Page 111 - IJB-10-4
P. 111
International Journal of Bioprinting Biomaterials with antibacterial agents
111. Hillier K. Polyethylene glycol. In: Enna SJ, Bylund DB, eds. doi: 10.1016/j.actbio.2021.01.046
xPharm: The Comprehensive Pharmacology Reference. New 123. Zhao X, Pei D, Yang Y, et al. Green tea derivative driven
York: Elsevier; 2007:1-3.
smart hydrogels with desired functions for chronic diabetic
112. Ilhan E, Cesur S, Guler E, et al. Development of Satureja wound treatment. Adv Funct Mater. 2021;31(18):2009442.
cuneifolia-loaded sodium alginate/polyethylene glycol doi: 10.1002/adfm.202009442
scaffolds produced by 3D-printing technology as a
diabetic wound dressing material. Int J Biol Macromol. 124. Tang X, Chen X, Zhang S, et al. Silk-inspired in situ hydrogel
2020;161:1040-1054. with anti-tumor immunity enhanced photodynamic therapy
doi: 10.1016/j.ijbiomac.2020.06.086 for melanoma and infected wound healing. Adv Funct Mater.
2021;31(17):2101320.
113. Sharma S, Parmar A, Kori S, Sandhir R. PLGA-based doi: 10.1002/adfm.202101320
nanoparticles: a new paradigm in biomedical applications.
TrAC Trends Anal Chem. 2016;80:30-40. 125. Liang Y, Li Z, Huang Y, Yu R, Guo B. Dual-dynamic-bond
doi: 10.1016/j.trac.2015.06.014 cross-linked antibacterial adhesive hydrogel sealants with
on-demand removability for post-wound-closure and
114. Kapoor DN, Bhatia A, Kaur R, Sharma R, Kaur G, Dhawan infected wound healing. ACS Nano. 2021;15(4):7078-7093.
S. PLGA: a unique polymer for drug delivery. Ther Deliv. doi: 10.1021/acsnano.1c00204
2015;6(1):41-58.
doi: 10.4155/tde.14.91 126. Yang Z, Huang R, Zheng B, et al. Highly stretchable, adhesive,
biocompatible, and antibacterial hydrogel dressings for
115. Teo YC, Abbas A, Park EJ, et al. 3D printed bioactive PLGA wound healing. Adv Sci. 2021;8(8):2003627.
dermal scaffold for burn wound treatment. ACS Mater Au. doi: 10.1002/advs.202003627
2023;3(3):265-272.
doi: 10.1021/acsmaterialsau.2c00079 127. Wang L, Zhang X, Yang K, et al. A novel double-crosslinking-
double-network design for injectable hydrogels with
116. Hajiali F, Tajbakhsh S, Shojaei A. Fabrication and properties enhanced tissue adhesion and antibacterial capability for
of polycaprolactone composites containing calcium wound treatment. Adv Funct Mater. 2020;30(1):1904156.
phosphate-based ceramics and bioactive glasses in bone tissue doi: 10.1002/adfm.201904156
engineering: a review. Polymer Rev. 2018;58(1):164-207.
doi: 10.1080/15583724.2017.1332640 128. Mai B, Jia M, Liu S, et al. Smart hydrogel-based DVDMS/
bFGF nanohybrids for antibacterial phototherapy with
117. Guarino V, Gentile G, Sorrentino L, Ambrosio L.
Polycaprolactone: synthesis, properties, and applications. In: multiple damaging sites and accelerated wound healing.
Encyclopedia of Polymer Science and Technology. Hoboken, ACS Appl Mater Interfaces. 2020;12(9):10156-10169.
New Jersey, US: Wiley; 2002:1-36. doi: 10.1021/acsami.0c00298
doi: 10.1002/0471440264.pst658 129. Deng H, Yu Z, Chen S, et al. Facile and eco-friendly
118. Domínguez-Robles J, Cuartas-Gómez E, Dynes S, et al. fabrication of polysaccharides-based nanocomposite
Poly(caprolactone)/lignin-based 3D-printed dressings loaded hydrogel for photothermal treatment of wound infection.
with a novel combination of bioactive agents for wound- Carbohydr Polym. 2020;230:115565.
healing applications. Sustain Mater Technol. 2023;35:e00581. doi: 10.1016/j.carbpol.2019.115565
doi: 10.1016/j.susmat.2023.e00581 130. Yao X, Zhu G, Zhu P, et al. Omniphobic ZIF-8@hydrogel
119. Afghah F, Ullah M, Seyyed Monfared Zanjani J, et al. 3D membrane by microfluidic-emulsion-templating method
printing of silver-doped polycaprolactone-poly(propylene for wound healing. Adv Funct Mater. 2020;30(13):1909389.
succinate) composite scaffolds for skin tissue engineering. doi: 10.1002/adfm.201909389
Biomed Mater. 2020;15(3):035015. 131. Yu N, Wang X, Qiu L, et al. Bacteria-triggered hyaluronan/
doi: 10.1088/1748-605X/ab7417 AgNPs/gentamicin nanocarrier for synergistic bacteria
120. Fang Z, Lin T, Fan S, et al. Antibacterial, injectable, and disinfection and wound healing application. Chem Eng J.
adhesive hydrogel promotes skin healing. Front Bioeng 2020;380:122582.
Biotechnol. 2023;11:1180073. doi: 10.1016/j.cej.2019.122582
doi: 10.3389/fbioe.2023.1180073 132. Qiu Y, Wang Q, Chen Y, Xia S, Huang W, Wei Q. A novel
121. Hu B, Berkey C, Feliciano T, et al. Thermal-disrupting interface multilayer composite membrane for wound healing in mice
mitigates intercellular cohesion loss for accurate topical skin defect model. Polymers. 2020;12(3):573.
antibacterial therapy. Adv Mater. 2020;32(12):e1907030. doi: 10.3390/polym12030573.
doi: 10.1002/adma.201907030 133. Schuhladen K, Mukoo P, Liverani L, Neščáková Z,
122. Wei S, Xu P, Yao Z, et al. A composite hydrogel with co- Boccaccini AR. Manuka honey and bioactive glass impart
delivery of antimicrobial peptides and platelet-rich plasma methylcellulose foams with antibacterial effects for wound-
to enhance healing of infected wounds in diabetes. Acta healing applications. Biomed Mater. 2020;15(6):065002.
Biomater. 2021;124:205-218. doi: 10.1088/1748-605X/ab87e5
Volume 10 Issue 4 (2024) 103 doi: 10.36922/ijb.3372

