Page 111 - IJB-10-4
P. 111

International Journal of Bioprinting                                   Biomaterials with antibacterial agents




            111. Hillier K. Polyethylene glycol. In: Enna SJ, Bylund DB, eds.      doi: 10.1016/j.actbio.2021.01.046
               xPharm: The Comprehensive Pharmacology Reference. New   123. Zhao X, Pei D, Yang Y, et al. Green tea derivative driven
               York: Elsevier; 2007:1-3.
                                                                  smart hydrogels with desired functions for chronic diabetic
            112. Ilhan E, Cesur S, Guler E, et al. Development of Satureja   wound treatment. Adv Funct Mater. 2021;31(18):2009442.
               cuneifolia-loaded sodium alginate/polyethylene glycol      doi: 10.1002/adfm.202009442
               scaffolds produced by 3D-printing technology as a
               diabetic wound dressing material.  Int  J  Biol  Macromol.   124. Tang X, Chen X, Zhang S, et al. Silk-inspired in situ hydrogel
               2020;161:1040-1054.                                with anti-tumor immunity enhanced photodynamic therapy
               doi: 10.1016/j.ijbiomac.2020.06.086                for melanoma and infected wound healing. Adv Funct Mater.
                                                                  2021;31(17):2101320.
            113. Sharma  S,  Parmar  A,  Kori  S,  Sandhir  R.  PLGA-based      doi: 10.1002/adfm.202101320
               nanoparticles: a new paradigm in biomedical applications.
               TrAC Trends Anal Chem. 2016;80:30-40.           125. Liang Y, Li Z, Huang Y, Yu R, Guo B. Dual-dynamic-bond
               doi: 10.1016/j.trac.2015.06.014                    cross-linked antibacterial adhesive hydrogel sealants with
                                                                  on-demand  removability  for post-wound-closure  and
            114. Kapoor DN, Bhatia A, Kaur R, Sharma R, Kaur G, Dhawan   infected wound healing. ACS Nano. 2021;15(4):7078-7093.
               S. PLGA: a unique polymer for drug delivery. Ther Deliv.      doi: 10.1021/acsnano.1c00204
               2015;6(1):41-58.
               doi: 10.4155/tde.14.91                          126. Yang Z, Huang R, Zheng B, et al. Highly stretchable, adhesive,
                                                                  biocompatible, and antibacterial hydrogel dressings for
            115. Teo YC, Abbas A, Park EJ, et al. 3D printed bioactive PLGA   wound healing. Adv Sci. 2021;8(8):2003627.
               dermal scaffold for burn wound treatment. ACS Mater Au.      doi: 10.1002/advs.202003627
               2023;3(3):265-272.
               doi: 10.1021/acsmaterialsau.2c00079             127. Wang L, Zhang X, Yang K, et al. A novel double-crosslinking-
                                                                  double-network design for injectable hydrogels with
            116. Hajiali F, Tajbakhsh S, Shojaei A. Fabrication and properties   enhanced tissue adhesion and antibacterial capability for
               of polycaprolactone composites containing calcium   wound treatment. Adv Funct Mater. 2020;30(1):1904156.
               phosphate-based ceramics and bioactive glasses in bone tissue      doi: 10.1002/adfm.201904156
               engineering: a review. Polymer Rev. 2018;58(1):164-207.
               doi: 10.1080/15583724.2017.1332640              128. Mai B, Jia M, Liu S, et al. Smart hydrogel-based DVDMS/
                                                                  bFGF nanohybrids for antibacterial phototherapy with
            117. Guarino V, Gentile G, Sorrentino L, Ambrosio L.
               Polycaprolactone: synthesis, properties, and applications. In:   multiple damaging sites and accelerated wound healing.
               Encyclopedia of Polymer Science and Technology. Hoboken,   ACS Appl Mater Interfaces. 2020;12(9):10156-10169.
               New Jersey, US: Wiley; 2002:1-36.                  doi: 10.1021/acsami.0c00298
               doi: 10.1002/0471440264.pst658                  129. Deng H, Yu Z, Chen S, et al. Facile and eco-friendly
            118. Domínguez-Robles J, Cuartas-Gómez E, Dynes S, et al.   fabrication of polysaccharides-based nanocomposite
               Poly(caprolactone)/lignin-based 3D-printed dressings loaded   hydrogel for photothermal treatment of wound infection.
               with a novel combination of bioactive agents for wound-  Carbohydr Polym. 2020;230:115565.
               healing applications. Sustain Mater Technol. 2023;35:e00581.     doi: 10.1016/j.carbpol.2019.115565
               doi: 10.1016/j.susmat.2023.e00581               130. Yao X, Zhu G, Zhu P, et al. Omniphobic ZIF-8@hydrogel
            119. Afghah F, Ullah M, Seyyed Monfared Zanjani J, et al. 3D   membrane by microfluidic-emulsion-templating method
               printing of silver-doped polycaprolactone-poly(propylene   for wound healing. Adv Funct Mater. 2020;30(13):1909389.
               succinate) composite scaffolds for skin tissue engineering.      doi: 10.1002/adfm.201909389
               Biomed Mater. 2020;15(3):035015.                131. Yu N, Wang X, Qiu L, et al. Bacteria-triggered hyaluronan/
               doi: 10.1088/1748-605X/ab7417                      AgNPs/gentamicin nanocarrier for synergistic bacteria
            120. Fang Z, Lin T, Fan S, et al. Antibacterial, injectable, and   disinfection and wound healing application.  Chem Eng J.
               adhesive hydrogel promotes skin healing.  Front Bioeng   2020;380:122582.
               Biotechnol. 2023;11:1180073.                       doi: 10.1016/j.cej.2019.122582
               doi: 10.3389/fbioe.2023.1180073                 132. Qiu Y, Wang Q, Chen Y, Xia S, Huang W, Wei Q. A novel
            121.  Hu B, Berkey C, Feliciano T, et al. Thermal-disrupting interface   multilayer composite membrane for wound healing in mice
               mitigates intercellular cohesion loss for accurate topical   skin defect model. Polymers. 2020;12(3):573.
               antibacterial therapy. Adv Mater. 2020;32(12):e1907030.     doi: 10.3390/polym12030573.
               doi: 10.1002/adma.201907030                     133. Schuhladen K, Mukoo P, Liverani L, Neščáková Z,
            122. Wei S, Xu P, Yao Z, et al. A composite hydrogel with co-  Boccaccini AR. Manuka honey and bioactive glass impart
               delivery of antimicrobial peptides and platelet-rich plasma   methylcellulose foams with antibacterial effects for wound-
               to enhance healing of infected wounds in diabetes.  Acta   healing applications. Biomed Mater. 2020;15(6):065002.
               Biomater. 2021;124:205-218.                        doi: 10.1088/1748-605X/ab87e5

            Volume 10 Issue 4 (2024)                       103                                doi: 10.36922/ijb.3372
   106   107   108   109   110   111   112   113   114   115   116