Page 174 - IJB-10-5
P. 174

International Journal of Bioprinting                               Nozzle optimization for multi-ink bioprinting




            8.   Heinrich MA, Liu W, Jimenez A, et al. 3D bioprinting:   20.  Hardin JO, Ober TJ, Valentine AD, Lewis JA. Microfluidic
               from benches to translational applications.  Small. 2019;   printheads for multimaterial 3D printing of viscoelastic
               15(23):1–47.                                       inks. Adv Mater. 2015;27(21):3279-3284.
               doi: 10.1002/smll.201805510                        doi: 10.1002/adma.201500222
            9.   Derakhshanfar S, Mbeleck R, Xu K, Zhang X, Zhong W,   21.  Skylar-Scott MA, Mueller J, Visser CW, Lewis JA. Voxelated
               Xing M. 3D bioprinting for biomedical devices and tissue   soft matter via multimaterial multinozzle 3D printing.
               engineering: a review of recent trends and advances. Bioact   Nature. 2019;575(7782):330-335.
               Mater. 2018;3(2):144-156.                          doi: 10.1038/s41586-019-1736-8
               doi: 10.1016/j.bioactmat.2017.11.008
                                                               22.  Cameron T, Naseri E, Maccallum B, Ahmadi A. Development
            10.  Ng WL, Lee JM, Zhou M, et al. Vat polymerization-based   of a disposable single-nozzle printhead for 3D bioprinting
               bioprinting - process, materials, applications and regulatory   of  continuous  multi-material  constructs.  Micromachines
               challenges. Biofabrication. 2020;12(2):022001.     (Basel). 2020;11(5):459.
               doi: 10.1088/1758-5090/ab6034                      doi: 10.3390/mi11050459
            11.  Miri AK, Mirzaee I, Hassan S, et al. Effective bioprinting   23.  Zhou LY, Gao Q, Fu JZ, et al. Multimaterial 3D printing
               resolution in tissue model fabrication.  Lab Chip.   of highly stretchable silicone elastomers.  ACS  Appl  Mater
               2019;19(11):2019-2037.                             Interfaces. 2019;11(26):23573-23583.
               doi: 10.1039/c8lc01037d                            doi: 10.1021/acsami.9b04873
            12.  Hernandez-Quintanar  L,  Rodriguez-Salvador  M.  24.  Tai C, Bouissil S, Gantumur E, et al. Use of anionic
               Discovering new 3D bioprinting applications: analyzing   polysaccharides  in  the  development  of  3D  bioprinting
               the case of optical tissue phantoms.  Int J Bioprint. 2019;   technology. Appl Sci. 2019;9(13):2596.
               5(1):1-11.                                         doi: 10.3390/app9132596
               doi: 10.18063/IJB.v5i1.178
                                                               25.  Kolesky DB, Homan KA, Skylar-Scott MA, Lewis JA. Three-
            13.  Hinton TJ, Lee A, Feinberg AW. 3D bioprinting from the   dimensional bioprinting of thick vascularized tissues. Proc
               micrometer to millimeter length scales: size does matter.   Natl Acad Sci U S A. 2016;113(12):3179-3184.
               Curr Opin Biomed Eng. 2017;1:31-37.                doi: 10.1073/pnas.1521342113
               doi: 10.1016/j.cobme.2017.02.004
                                                               26.  Jessop ZM, Al-Sabah A, Gao N, et al. Printability of pulp
            14.  Murphy SV, De Coppi P, Atala A. Opportunities and   derived crystal, fibril and blend nanocellulose-alginate
               challenges of translational 3D bioprinting. Nat Biomed Eng.   bioinks for extrusion 3D bioprinting.  Biofabrication.
               2020;4(4):370-380.                                 2019;11(4):045006.
               doi: 10.1038/s41551-019-0471-7                     doi: 10.1088/1758-5090/ab0631
            15.  Santoni S, Gugliandolo SG, Sponchioni M, Moscatelli D,   27.  Nair K, Gandhi M, Khalil S, et al. Characterization of
               Colosimo BM. 3D bioprinting: current status and trends—a   cell viability during bioprinting processes.  Biotechnol
               guide to the literature and industrial practice. Biodes Manuf.   J. 2009;4(8):1168-1177.
               2021;5:14-42.                                      doi: 10.1002/biot.200900004
               doi: 10.1007/s42242-021-00165-0
                                                               28.  Nadernezhad  A,  Khani  N,  Skvortsov  GA,  et  al.
            16.  Gu Z, Fu J, Lin H, He Y. Development of 3D bioprinting:   Multifunctional 3D printing of heterogeneous hydrogel
               from printing methods to biomedical applications.  Asian    structures. Sci Rep. 2016;6:33178.
               J Pharm Sci. 2020;15(5):529-557.                   doi: 10.1038/srep33178
               doi: 10.1016/j.ajps.2019.11.003
                                                               29.  Yang L, Li S, Liu J, Cheng J. Fluid mixing in droplet-based
            17.  Liu Z, Zhang M, Bhandari B, Wang Y. 3D printing: printing   microfluidics with T junction and convergent–divergent
               precision  and  application  in  food  sector.  Trends Food Sci   sinusoidal microchannels.  Electrophoresis. 2018;39(3):
               Technol. 2017;69:83-94.                            512-520.
               doi: 10.1016/j.tifs.2017.08.018                    doi: 10.1002/elps.201700374
            18.  Brunel LG, Hull SM, Heilshorn SC. Engineered assistive   30.  Juraeva M, Kang DJ. Mixing performance of a cross-channel
               materials for 3D bioprinting: support bath and sacrificial   split-and-recombine micro-mixer  combined with  mixing
               inks. Biofabrication. 2022;14:032001.              cell. Micromachines (Basel). 2020;11(7):685.
               doi: 10.1088/1758-5900/ac6bbe                      doi: 10.3390/mi11070685
            19.  Sodupe-Ortega  E,  Sanz-Garcia  A, Pernia-Espinoza   31.  Shamloo A, Mirzakhanloo M, Dabirzadeh MR. Numerical
               A, Escobedo-Lucea C. Accurate calibration in multi-  simulation for efficient mixing of Newtonian and non-
               material 3D bioprinting for tissue engineering.  Materials.   Newtonian fluids in an electro-osmotic micro-mixer. Chem
               2018;11(8):1-19.                                   Eng Process: Process Intensif. 2016;107:11-20.
               doi: 10.3390/ma11081402                            doi: 10.1016/j.cep.2016.06.003


            Volume 10 Issue 5 (2024)                       166                                doi: 10.36922/ijb.4091
   169   170   171   172   173   174   175   176   177   178   179