Page 175 - IJB-10-5
P. 175

International Journal of Bioprinting                               Nozzle optimization for multi-ink bioprinting




            32.  Xu K, Ganapathy K, Andl T, et al. 3D porous chitosan-  gelation behaviors of sodium alginate induced by calcium
               alginate scaffold stiffness promotes differential responses in   ions. LWT. 2019;103:131-138.
               prostate cancer cell lines. Biomaterials. 2019;217:119311.     doi: 10.1016/j.lwt.2018.12.081
               doi: 10.1016/j.biomaterials.2019.119311
                                                               41.  Hidaka M, Kojima M, Nakahata M, Sakai S. Visible
            33.  de Melo BAG, Jodat YA, Mehrotra S, et al. 3D printed   light-curable chitosan ink for extrusion-based and vat
               cartilage-like  tissue  constructs  with  spatially  controlled   polymerization-based 3D bioprintings.  Polymers (Basel).
               mechanical properties. Adv Funct Mater. 2019;29(51):1-13.  2021;13(9):1382.
               doi: 10.1002/adfm.201906330                        doi: 10.3390/polym13091382
            34.  Trucco  D, Sharma  A, Manferdini  C,  et al.  Modeling  and   42.  Jiong Z, Ruiqi Z, Fusheng Z, Jianquan K. Effects of sodium
               fabrication of silk fibroin-gelatin-based constructs using   carboxymethyl cellulose on rheological properties and
               extrusion-based three-dimensional bioprinting.  ACS   gelation behaviors of sodium alginate induced by calcium
               Biomater Sci Eng. 2021;7(7):3306-3320.             ions. LWT. 2019;103:131-138.
               doi: 10.1021/acsbiomaterials.1c00410               doi: 10.1016/j.lwt.2018.12.081
            35.  Köpf M, Nasehi R, Kreimendahl F, Jockenhoevel S, Fischer   43.  Minerva AHG, Javier SF, Maribel CM, et al. Protective
               H. Bioprinting-associated shear stress and hydrostatic   effect of alginate microcapsules with different rheological
               pressure affect the angiogenic potential of human umbilical   behavior on Lactiplantibacillus plantarum 299v. Gels. 2023;
               vein endothelial cells. Int J Bioprint. 2022;8(4):96-107.  9(9):682.
               doi: 10.18063/ijb.v8i4.606                         doi: 10.3390/gels9090682
            36.  Zaeri A, Zgeib R, Cao K, Zhang F, Chang RC. Numerical   44.  Emebu S, Ogunleye RO, Achbergerová E, Vítková L, Ponížil
               analysis  on the effects  of microfluidic-based  bioprinting   P, Martinez CM. Review and proposition for model-based
               parameters on the microfiber geometrical outcomes.  Sci   multivariable-multiobjective optimisation of extrusion-
               Rep. 2022;12(1):3364.                              based bioprinting. Appl Mater Today. 2023;34:101914.
               doi: 10.1038/s41598-022-07392-0                    doi: 10.1016/j.apmt.2023.101914
            37.  Sakai S, Mochizuki K, Qu Y, Mail M, Nakahata M, Taya M.   45.  Elie  M,  Eric  C.  Precise  method  to  estimate  the  Hershel-
               Peroxidase-catalyzed microextrusion bioprinting of cell-  Bulkley parameters from pipe rheometer measurements.
               laden hydrogel constructs in vaporized ppm-level hydrogen   Fluids. 2021;6(4):157.
               peroxide. Biofabrication. 2018;10(4):045007.       doi: 10.3390/fluids6040157
               doi: 10.1088/1758-5090/aadc9e
                                                               46.  Huber T, Pierre G. Extension of the natural element method
            38.  Sakai S, Ohi H, Taya M. Gelatin/hyaluronic acid content   to surface tension and wettability for the simulation of
               in hydrogels obtained through blue light-induced gelation   polymer flows at the micro and nano scales. J Nonnewton
               affects hydrogel properties and adipose stem cell behaviors.   Fluid Mech. 2013;300:9-16.
               Biomolecules. 2019;9(8):342.                       doi: 10.1016/j.jnnfm.2012.10.003
               doi: 10.3390/biom9080342
                                                               47.  Jalal J, Leong TSH. Microstreaming and its role in
            39.  Pössl A, Hartzke D, Schmidts TM, Runkel FE, Schlupp P.   applications: a mini-review. Fluids. 2018;3(4):93.
               A targeted rheological bioink development guideline and its      doi: 10.3390/fluids3040093
               systematic correlation with printing behavior. Biofabrication.   48.  Wang L, Xu ME, Luo L, Zhou Y, Si P. Iterative feedback bio-
               2021;13(3):035021.                                 printing-derived cell-laden hydrogel scaffolds with optimal
               doi: 10.1088/1758-5090/abde1e
                                                                  geometrical fidelity and cellular controllability.  Sci Rep.
            40.  Zheng J, Zeng R, Zhang F, Kan J. Effects of sodium   2018;8(1):2802.
               carboxymethyl cellulose on rheological properties and      doi: 10.1038/s41598-018-21274-4





















            Volume 10 Issue 5 (2024)                       167                                doi: 10.36922/ijb.4091
   170   171   172   173   174   175   176   177   178   179   180