Page 175 - IJB-10-5
P. 175
International Journal of Bioprinting Nozzle optimization for multi-ink bioprinting
32. Xu K, Ganapathy K, Andl T, et al. 3D porous chitosan- gelation behaviors of sodium alginate induced by calcium
alginate scaffold stiffness promotes differential responses in ions. LWT. 2019;103:131-138.
prostate cancer cell lines. Biomaterials. 2019;217:119311. doi: 10.1016/j.lwt.2018.12.081
doi: 10.1016/j.biomaterials.2019.119311
41. Hidaka M, Kojima M, Nakahata M, Sakai S. Visible
33. de Melo BAG, Jodat YA, Mehrotra S, et al. 3D printed light-curable chitosan ink for extrusion-based and vat
cartilage-like tissue constructs with spatially controlled polymerization-based 3D bioprintings. Polymers (Basel).
mechanical properties. Adv Funct Mater. 2019;29(51):1-13. 2021;13(9):1382.
doi: 10.1002/adfm.201906330 doi: 10.3390/polym13091382
34. Trucco D, Sharma A, Manferdini C, et al. Modeling and 42. Jiong Z, Ruiqi Z, Fusheng Z, Jianquan K. Effects of sodium
fabrication of silk fibroin-gelatin-based constructs using carboxymethyl cellulose on rheological properties and
extrusion-based three-dimensional bioprinting. ACS gelation behaviors of sodium alginate induced by calcium
Biomater Sci Eng. 2021;7(7):3306-3320. ions. LWT. 2019;103:131-138.
doi: 10.1021/acsbiomaterials.1c00410 doi: 10.1016/j.lwt.2018.12.081
35. Köpf M, Nasehi R, Kreimendahl F, Jockenhoevel S, Fischer 43. Minerva AHG, Javier SF, Maribel CM, et al. Protective
H. Bioprinting-associated shear stress and hydrostatic effect of alginate microcapsules with different rheological
pressure affect the angiogenic potential of human umbilical behavior on Lactiplantibacillus plantarum 299v. Gels. 2023;
vein endothelial cells. Int J Bioprint. 2022;8(4):96-107. 9(9):682.
doi: 10.18063/ijb.v8i4.606 doi: 10.3390/gels9090682
36. Zaeri A, Zgeib R, Cao K, Zhang F, Chang RC. Numerical 44. Emebu S, Ogunleye RO, Achbergerová E, Vítková L, Ponížil
analysis on the effects of microfluidic-based bioprinting P, Martinez CM. Review and proposition for model-based
parameters on the microfiber geometrical outcomes. Sci multivariable-multiobjective optimisation of extrusion-
Rep. 2022;12(1):3364. based bioprinting. Appl Mater Today. 2023;34:101914.
doi: 10.1038/s41598-022-07392-0 doi: 10.1016/j.apmt.2023.101914
37. Sakai S, Mochizuki K, Qu Y, Mail M, Nakahata M, Taya M. 45. Elie M, Eric C. Precise method to estimate the Hershel-
Peroxidase-catalyzed microextrusion bioprinting of cell- Bulkley parameters from pipe rheometer measurements.
laden hydrogel constructs in vaporized ppm-level hydrogen Fluids. 2021;6(4):157.
peroxide. Biofabrication. 2018;10(4):045007. doi: 10.3390/fluids6040157
doi: 10.1088/1758-5090/aadc9e
46. Huber T, Pierre G. Extension of the natural element method
38. Sakai S, Ohi H, Taya M. Gelatin/hyaluronic acid content to surface tension and wettability for the simulation of
in hydrogels obtained through blue light-induced gelation polymer flows at the micro and nano scales. J Nonnewton
affects hydrogel properties and adipose stem cell behaviors. Fluid Mech. 2013;300:9-16.
Biomolecules. 2019;9(8):342. doi: 10.1016/j.jnnfm.2012.10.003
doi: 10.3390/biom9080342
47. Jalal J, Leong TSH. Microstreaming and its role in
39. Pössl A, Hartzke D, Schmidts TM, Runkel FE, Schlupp P. applications: a mini-review. Fluids. 2018;3(4):93.
A targeted rheological bioink development guideline and its doi: 10.3390/fluids3040093
systematic correlation with printing behavior. Biofabrication. 48. Wang L, Xu ME, Luo L, Zhou Y, Si P. Iterative feedback bio-
2021;13(3):035021. printing-derived cell-laden hydrogel scaffolds with optimal
doi: 10.1088/1758-5090/abde1e
geometrical fidelity and cellular controllability. Sci Rep.
40. Zheng J, Zeng R, Zhang F, Kan J. Effects of sodium 2018;8(1):2802.
carboxymethyl cellulose on rheological properties and doi: 10.1038/s41598-018-21274-4
Volume 10 Issue 5 (2024) 167 doi: 10.36922/ijb.4091

