Page 345 - IJB-10-5
P. 345
International Journal of Bioprinting Immunomodulatory bone repair by MBG/PCL
11. Schumacher M, Habibovic P, van Rijt S. Mesoporous tendon regeneration and functional recovery. Biomaterials.
bioactive glass composition effects on degradation and 2023;294.
bioactivity. Bioact Mater. 2021;6(7):1921-1931. doi: 10.1016/j.biomaterials.2023.121998
doi: 10.1016/j.bioactmat.2020.12.007
23. Zheng K, Niu W, Lei B, Boccaccini AR. Immunomodulatory
12. Zheng K, Boccaccini AR. Sol-gel processing of bioactive bioactive glasses for tissue regeneration. Acta Biomater.
glass nanoparticles: a review. Adv Colloid Interface Sci. 2021;133:168-186.
2017;249:363-373. doi: 10.1016/j.actbio.2021.08.023
doi: 10.1016/j.cis.2017.03.008
24. Gomez-Cerezo N, Casarrubios L, Morales I, et al. Effects
13. El-Fiqi A, Mandakhbayar N, Jo SB, et al. Nanotherapeutics of a mesoporous bioactive glass on osteoblasts, osteoclasts
for regeneration of degenerated tissue infected by bacteria and macrophages. J Colloid Interface Sci. 2018;528:
through the multiple delivery of bioactive ions and growth 309-320.
factor with antibacterial/angiogenic and osteogenic/ doi: 10.1016/j.jcis.2018.05.099
odontogenic capacity. Bioact Mater. 2021;6(1):123-136. 25. Huang Y, Wu C, Zhang X, Chang J, Dai K. Regulation
doi: 10.1016/j.bioactmat.2020.07.010
of immune response by bioactive ions released from
14. Xin T, Gu Y, Cheng R, et al. Inorganic strengthened hydrogel silicate bioceramics for bone regeneration. Acta Biomater.
membrane as regenerative periosteum. Acs Appl Mater 2018;66:81-92.
Interfaces. 2017;9(47):41168-41180. doi: 10.1016/j.actbio.2017.08.044
doi: 10.1021/acsami.7b13167
26. Singh RP, Ramarao P. Accumulated polymer degradation
15. Zhao H, Wang X, Jin A, et al. Reducing relapse and products as effector molecules in cytotoxicity of polymeric
accelerating osteogenesis in rapid maxillary expansion nanoparticles. Toxicol Sci. 2013;136(1):131-143.
using an injectable mesoporous bioactive glass/fibrin glue doi: 10.1093/toxsci/kft179
composite hydrogel. Bioact Mater. 2022;18:507-525. 27. Wang X, Zachman AL, Chun YW, Shen F-W, Hwang Y-S,
doi: 10.1016/j.bioactmat.2022.03.001
Sung H-J. Polymeric stent materials dysregulate macrophage
16. Wang C, Meng C, Zhang Z, Zhu Q. 3D printing of and endothelial cell functions: implications for coronary
polycaprolactone/bioactive glass composite scaffolds for in artery stent. Int J Cardiol. 2014;174(3):688-695.
situ bone repair. Ceram Int. 2022;48(6):7491-7499. doi: 10.1016/j.ijcard.2014.04.228
doi: 10.1016/j.ceramint.2021.11.293
28. Wang Z, Cui Y, Wang J, et al. The effect of thick fibers and
17. Huang W, Cai X, Xiao C, Song W, Yin H, Xu W. large pores of electrospun poly(ε-caprolactone) vascular
Surface micropatterning of 3D printed PCL scaffolds grafts on macrophage polarization and arterial regeneration.
promotes osteogenic differentiation of BMSCs and Biomaterials. 2014;35(22):5700-5710.
regulates macrophage M2 polarization. Heliyon doi: 10.1016/j.biomaterials.2014.03.078
2024;10(5):e26621-e26621. 29. Abebayehu D, Spence A, Boyan BD, Schwartz Z, Ryan JJ,
doi: 10.1016/j.heliyon.2024.e26621
McClure MJ. Galectin-1 promotes an M2 macrophage
18. Arron JR, Choi Y. Osteoimmunology - bone versus immune response to polydioxanone scaffolds. J Biomed Mater Res
system. Nature. 2000;408(6812):535-536. Part A. 2017;105(9):2562-2571.
doi: 10.1038/35046196 doi: 10.1002/jbm.a.36113
19. Yang N, Liu Y. The role of the immune microenvironment in 30. Zhu G, Zhang R, Xie Q, et al. Shish-kebab structure fiber
bone regeneration. Int J Med Sci. 2021;18(16):3697-3707. with nano and micro diameter regulate macrophage
doi: 10.7150/ijms.61080 polarization for anti-inflammatory and bone differentiation.
Mater Today Bio. 2023;23.
20. Wu Z, Bai J, Ge G, et al. Regulating macrophage polarization
in high glucose microenvironment using lithium-modified doi: 10.1016/j.mtbio.2023.100880
bioglass-hydrogel for diabetic bone regeneration. Adv 31. Wang Y, Liao T, Shi M, Liu C, Chen X. Facile synthesis and
Healthc Mater. 2022;11(13). in vitro bioactivity of radial mesoporous bioactive glasses.
doi: 10.1002/adhm.202200298 Mater Lett. 2017;206:205-209.
doi: 10.1016/j.matlet.2017.07.021
21. Feito MJ, Casarrubios L, Onaderra M, et al. Response of
RAW 264.7 and J774A.1 macrophages to particles and 32. Chaudhary S, Ghosal D, Tripathi P, Kumar S. Cellular
nanoparticles of a mesoporous bioactive glass: a comparative metabolism: a link connecting cellular behaviour with the
study. Colloids Surf B. 2021;208. physiochemical properties of biomaterials for bone tissue
doi: 10.1016/j.colsurfb.2021.112110 engineering. Biomater Sci. 2023;11(7):2277-2291.
doi: 10.1039/d2bm01410f
22. Xu H, Zhu Y, Hsiao AW-T, et al. Bioactive glass-elicited
stem cell-derived extracellular vesicles regulate M2 33. Lewallen EA, Trousdale WH, Thaler R, et al. Surface
macrophage polarization and angiogenesis to improve roughness of titanium orthopedic implants alters the
Volume 10 Issue 5 (2024) 337 doi: 10.36922/ijb.3551

