Page 346 - IJB-10-5
P. 346

International Journal of Bioprinting                                Immunomodulatory bone repair by MBG/PCL




               biological phenotype of human mesenchymal stromal cells.   scaffolds for tissue engineering. Mater Sci Eng C Mater Biol
               Tissue Eng Part A. 2021;27(23-24):1503-1516.       Appl. 2017;71:1253-1266.
               doi: 10.1089/ten.tea.2020.0369                     doi: 10.1016/j.msec.2016.11.027
            34.  Yuan B, Zhou S-y, Chen X-s. Rapid prototyping technology   45.  Marrella A, Lee TY, Lee DH, et al. Engineering vascularized
               and its application in bone tissue engineering.  J Zhejiang   and innervated bone biomaterials for improved skeletal
               Univ Sci B. 2017;18(4):303-315.                    tissue regeneration. Mater Today. 2018;21(4):362-376.
               doi: 10.1631/jzus.B1600118                         doi: 10.1016/j.mattod.2017.10.005
            35.  van der Heide D, Cidonio G, Stoddart MJ, D’Este M. 3D   46.  Axpe E, Oyen ML. Applications of alginate-based bioinks in
               printing of inorganic-biopolymer composites for bone   3D bioprinting. Int J Mol Sci. 2016;17(12).
               regeneration. Biofabrication. 2022;14(4).          doi: 10.3390/ijms17121976
               doi: 10.1088/1758-5090/ac8cb2
                                                               47.  Fiocco L, Elsayed H, Badocco D, et al. Direct ink writing
            36.  Garot C, Bettega G, Picart C. Additive manufacturing of   of silica-bonded calcite scaffolds from preceramic polymers
               material scaffolds for bone regeneration: toward application   and fillers. Biofabrication. 2017;9(2).
               in the clinics. Adv Funct Mater. 2021;31(5).       doi: 10.1088/1758-5090/aa6c37
               doi: 10.1002/adfm.202006967
                                                               48.  Mastrogiacomo M, Scaglione S, Martinetti R, et al. Role
            37.  Feng  Y,  Zhu  S,  Mei  D,  et  al.  Application  of  3D  printing   of scaffold internal structure on in vivo bone formation in
               technology in bone tissue engineering: a review. Curr Drug   macroporous calcium phosphate bioceramics. Biomaterials.
               Delivery. 2021;18(7):847-861.                      2006;27(17):3230-3237.
               doi: 10.2174/1567201817999201113100322             doi: 10.1016/j.biomaterials.2006.01.031
            38.  Ebrahimi S, Sipaut CS. The effect of liquid phase   49.  Hayashi K, Yanagisawa T, Kishida R, Ishikawa K. Effects of
               concentration  on  the  setting  time  and compressive   scaffold shape on bone regeneration: tiny shape differences
               strength of hydroxyapatite/bioglass composite cement.   affect the entire system. Acs Nano. 2022;16(8):11755-11768.
               Nanomaterials. 2021;11(10).                        doi: 10.1021/acsnano.2c03776
               doi: 10.3390/nano11102576
                                                               50.  Gorustovich AA, Roether JA, Boccaccini AR. Effect of
            39.  Rupp F, Liang L, Geis-Gerstorfer J, Scheideler L, Huettig F.   bioactive glasses on angiogenesis: a review of in vitro and in
               Surface  characteristics  of dental  implants: a review.  Dent   vivo evidences. Tissue Eng Part B Rev. 2010;16(2):199-207.
               Mater. 2018;34(1):40-57.                           doi: 10.1089/ten.teb.2009.0416
               doi: 10.1016/j.dental.2017.09.007
                                                               51.  Hench LL. Genetic design of bioactive glass. J Eur Ceram
            40.  Wang L, He S, Wu X, et al. Polyetheretherketone/nano-  Soc. 2009;29(7):1257-1265.
               fluorohydroxyapatite  composite  with  antimicrobial     doi: 10.1016/j.jeurceramsoc.2008.08.002
               activity and  osseointegration  properties.  Biomaterials.
               2014;35(25):6758-6775.                          52.  Ajita J, Saravanan S, Selvamurugan N. Effect of size of
               doi: 10.1016/j.biomaterials.2014.04.085            bioactive glass nanoparticles on mesenchymal stem cell
                                                                  proliferation for dental and orthopedic applications. Mater
            41.  Muecksch C, Urbassek HM. Accelerated molecular   Sci Eng C Mater Biol Appl. 2015;53:142-149.
               dynamics study of the effects of surface hydrophilicity      doi: 10.1016/j.msec.2015.04.041
               on   protein  adsorption.  Langmuir.   2016;32(36):
               9156-9162.                                      53.  El-Rashidy  AA,  Roether  JA,  Harhaus  L,  Kneser  U,
               doi: 10.1021/acs.langmuir.6b02229                  Boccaccini AR. Regenerating bone with bioactive glass
                                                                  scaffolds: a review of in vivo studies in bone defect models.
            42.  Wang X, Molino BZ, Pitkanen S, et al. 3D scaffolds   Acta Biomater. 2017;62:1-28.
               of   polycaprolactone/copper-doped  bioactive  glass:     doi: 10.1016/j.actbio.2017.08.030
               architecture engineering with additive manufacturing and
               cellular  assessments  in  a  coculture  of  bone  marrow  stem   54.  Sepulveda P, Jones JR, Hench LL. Characterization of melt-
               cells and endothelial cells. Acs Biomater Sci Eng. 2019;5(9):   derived 45S5 and sol-gel-derived 58S bioactive glasses.
               4496-4510.                                         J Biomed Mater Res. 2001;58(6):734-740.
               doi: 10.1021/acsbiomaterials.9b00105               doi: 10.1002/jbm.10026
            43.  Zhou L, Fan L, Zhang F-M, et al. Hybrid gelatin/oxidized   55.  Xie W, Fu X, Tang F, et al. Dose-dependent modulation
               chondroitin  sulfate hydrogels  incorporating  bioactive   effects of bioactive glass particles on macrophages and
               glass nanoparticles with enhanced mechanical properties,   diabetic wound healing. J Mater Chem B. 2019;7(6):940-952.
               mineralization, and osteogenic differentiation. Bioact Mater.      doi: 10.1039/c8tb02938e
               2021;6(3):890-904.                              56.  Gao Q, Xie C, Wang P, et al. 3D printed multi-scale scaffolds
               doi: 10.1016/j.bioactmat.2020.09.012
                                                                  with ultrafine fibers for providing excellent biocompatibility.
            44.  Yazdimamaghani M, Razavi M, Vashaee D, Moharamzadeh   Mater Sci Eng C Mater Biol Appl. 2020;107.
               K, Boccaccini AR, Tayebi L. Porous magnesium-based      doi: 10.1016/j.msec.2019.110269

            Volume 10 Issue 5 (2024)                       338                                doi: 10.36922/ijb.3551
   341   342   343   344   345   346   347   348   349   350   351