Page 346 - IJB-10-5
P. 346
International Journal of Bioprinting Immunomodulatory bone repair by MBG/PCL
biological phenotype of human mesenchymal stromal cells. scaffolds for tissue engineering. Mater Sci Eng C Mater Biol
Tissue Eng Part A. 2021;27(23-24):1503-1516. Appl. 2017;71:1253-1266.
doi: 10.1089/ten.tea.2020.0369 doi: 10.1016/j.msec.2016.11.027
34. Yuan B, Zhou S-y, Chen X-s. Rapid prototyping technology 45. Marrella A, Lee TY, Lee DH, et al. Engineering vascularized
and its application in bone tissue engineering. J Zhejiang and innervated bone biomaterials for improved skeletal
Univ Sci B. 2017;18(4):303-315. tissue regeneration. Mater Today. 2018;21(4):362-376.
doi: 10.1631/jzus.B1600118 doi: 10.1016/j.mattod.2017.10.005
35. van der Heide D, Cidonio G, Stoddart MJ, D’Este M. 3D 46. Axpe E, Oyen ML. Applications of alginate-based bioinks in
printing of inorganic-biopolymer composites for bone 3D bioprinting. Int J Mol Sci. 2016;17(12).
regeneration. Biofabrication. 2022;14(4). doi: 10.3390/ijms17121976
doi: 10.1088/1758-5090/ac8cb2
47. Fiocco L, Elsayed H, Badocco D, et al. Direct ink writing
36. Garot C, Bettega G, Picart C. Additive manufacturing of of silica-bonded calcite scaffolds from preceramic polymers
material scaffolds for bone regeneration: toward application and fillers. Biofabrication. 2017;9(2).
in the clinics. Adv Funct Mater. 2021;31(5). doi: 10.1088/1758-5090/aa6c37
doi: 10.1002/adfm.202006967
48. Mastrogiacomo M, Scaglione S, Martinetti R, et al. Role
37. Feng Y, Zhu S, Mei D, et al. Application of 3D printing of scaffold internal structure on in vivo bone formation in
technology in bone tissue engineering: a review. Curr Drug macroporous calcium phosphate bioceramics. Biomaterials.
Delivery. 2021;18(7):847-861. 2006;27(17):3230-3237.
doi: 10.2174/1567201817999201113100322 doi: 10.1016/j.biomaterials.2006.01.031
38. Ebrahimi S, Sipaut CS. The effect of liquid phase 49. Hayashi K, Yanagisawa T, Kishida R, Ishikawa K. Effects of
concentration on the setting time and compressive scaffold shape on bone regeneration: tiny shape differences
strength of hydroxyapatite/bioglass composite cement. affect the entire system. Acs Nano. 2022;16(8):11755-11768.
Nanomaterials. 2021;11(10). doi: 10.1021/acsnano.2c03776
doi: 10.3390/nano11102576
50. Gorustovich AA, Roether JA, Boccaccini AR. Effect of
39. Rupp F, Liang L, Geis-Gerstorfer J, Scheideler L, Huettig F. bioactive glasses on angiogenesis: a review of in vitro and in
Surface characteristics of dental implants: a review. Dent vivo evidences. Tissue Eng Part B Rev. 2010;16(2):199-207.
Mater. 2018;34(1):40-57. doi: 10.1089/ten.teb.2009.0416
doi: 10.1016/j.dental.2017.09.007
51. Hench LL. Genetic design of bioactive glass. J Eur Ceram
40. Wang L, He S, Wu X, et al. Polyetheretherketone/nano- Soc. 2009;29(7):1257-1265.
fluorohydroxyapatite composite with antimicrobial doi: 10.1016/j.jeurceramsoc.2008.08.002
activity and osseointegration properties. Biomaterials.
2014;35(25):6758-6775. 52. Ajita J, Saravanan S, Selvamurugan N. Effect of size of
doi: 10.1016/j.biomaterials.2014.04.085 bioactive glass nanoparticles on mesenchymal stem cell
proliferation for dental and orthopedic applications. Mater
41. Muecksch C, Urbassek HM. Accelerated molecular Sci Eng C Mater Biol Appl. 2015;53:142-149.
dynamics study of the effects of surface hydrophilicity doi: 10.1016/j.msec.2015.04.041
on protein adsorption. Langmuir. 2016;32(36):
9156-9162. 53. El-Rashidy AA, Roether JA, Harhaus L, Kneser U,
doi: 10.1021/acs.langmuir.6b02229 Boccaccini AR. Regenerating bone with bioactive glass
scaffolds: a review of in vivo studies in bone defect models.
42. Wang X, Molino BZ, Pitkanen S, et al. 3D scaffolds Acta Biomater. 2017;62:1-28.
of polycaprolactone/copper-doped bioactive glass: doi: 10.1016/j.actbio.2017.08.030
architecture engineering with additive manufacturing and
cellular assessments in a coculture of bone marrow stem 54. Sepulveda P, Jones JR, Hench LL. Characterization of melt-
cells and endothelial cells. Acs Biomater Sci Eng. 2019;5(9): derived 45S5 and sol-gel-derived 58S bioactive glasses.
4496-4510. J Biomed Mater Res. 2001;58(6):734-740.
doi: 10.1021/acsbiomaterials.9b00105 doi: 10.1002/jbm.10026
43. Zhou L, Fan L, Zhang F-M, et al. Hybrid gelatin/oxidized 55. Xie W, Fu X, Tang F, et al. Dose-dependent modulation
chondroitin sulfate hydrogels incorporating bioactive effects of bioactive glass particles on macrophages and
glass nanoparticles with enhanced mechanical properties, diabetic wound healing. J Mater Chem B. 2019;7(6):940-952.
mineralization, and osteogenic differentiation. Bioact Mater. doi: 10.1039/c8tb02938e
2021;6(3):890-904. 56. Gao Q, Xie C, Wang P, et al. 3D printed multi-scale scaffolds
doi: 10.1016/j.bioactmat.2020.09.012
with ultrafine fibers for providing excellent biocompatibility.
44. Yazdimamaghani M, Razavi M, Vashaee D, Moharamzadeh Mater Sci Eng C Mater Biol Appl. 2020;107.
K, Boccaccini AR, Tayebi L. Porous magnesium-based doi: 10.1016/j.msec.2019.110269
Volume 10 Issue 5 (2024) 338 doi: 10.36922/ijb.3551

