Page 412 - IJB-10-5
P. 412

International Journal of Bioprinting               DEX-Loaded PLGA microspheres enhance cartilage regeneration




               doi: 10.1016/s0168-3659(01)00379-0              34.  Jin S, Xia X, Huang J, et al. Recent advances in PLGA-based
                                                                  biomaterials for bone tissue regeneration.  Acta Biomater.
            24.  Prajapati VD, Jani GK, Kapadia JR. Current knowledge on
               biodegradable microspheres in drug delivery. Expert Opin   2021;127:56-79.
               Drug Deliv. 2015;12(8):1283-1299.                  doi: 10.1016/j.actbio.2021.03.067
               doi: 10.1517/17425247.2015.1015985              35.  Park K. Tolerance levels of PLGA microspheres in the eyes.
            25.  Wen H, Guo J, Chang B, Yang W. pH-responsive composite   J Control Release. 2017;266:365.
               microspheres based on magnetic mesoporous silica      doi: 10.1016/j.jconrel.2017.11.010
               nanoparticle for drug delivery.  Eur J Pharm Biopharm.   36.  Jain H, Bairagi A, Srivastava S, Singh SB, Mehra NK.
               2013;84(1):91-98.                                  Recent advances in the development of microparticles for
               doi: 10.1016/j.ejpb.2012.11.019                    pulmonary administration. Drug Discov Today. 2020;25(10):
            26.  Lin TH, Wang HC, Cheng WH, Hsu HC, Yeh ML.       1865-1872.
               Osteochondral tissue regeneration using a tyramine-     doi: 10.1016/j.drudis.2020.07.018
               modified bilayered PLGA scaffold combined with   37.  Bian J, Cai F, Chen H, et al. Modulation of local overactive
               articular chondrocytes in a Porcine model.  Int J Mol  Sci.   inflammation via injectable hydrogel microspheres.  Nano
               2019;20(2):326.                                    Lett. 2021;21(6):2690-2698.
               doi: 10.3390/ijms20020326                          doi: 10.1021/acs.nanolett.0c04713
            27.  Qian Y, Zhou X, Zhang F, Diekwisch TGH, Luan   38.  Park JY, Ryu H, Lee B, et al. Development of a functional
               X, Yang J. Triple PLGA/PCL scaffold modification   airway-on-a-chip by 3D cell printing.  Biofabrication.
               including silver impregnation, collagen coating, and   2018;11(1):015002.
               electrospinning significantly improve biocompatibility,      doi: 10.1088/1758-5090/aae545
               antimicrobial, and osteogenic properties for orofacial tissue
               regeneration.  ACS Appl Mater Interfaces. 2019;11(41):3   39.  Long J, Yao Z, Zhang W, et al. Regulation of osteoimmune
               7381-37396.                                        microenvironment and osteogenesis by 3D-printed PLAG/
               doi: 10.1021/acsami.9b07053                        black phosphorus scaffolds for bone regeneration. Adv Sci
                                                                  (Weinh). 2023;10(28):e2302539.
            28.  Shahverdi M, Seifi S, Akbari A, Mohammadi K, Shamloo      doi: 10.1002/advs.202302539
               A, Movahhedy MR. Melt electrowriting of PLA, PCL,
               and composite PLA/PCL scaffolds for tissue engineering   40.  Yang F, Niu X, Gu X, Xu C, Wang W, Fan Y. Biodegradable
               application. Sci Rep. 2022;12(1):19935.            magnesium-incorporated poly(l-lactic acid) microspheres
               doi: 10.1038/s41598-022-24275-6                    for manipulation of drug release and alleviation of
                                                                  inflammatory  response.  ACS Appl Mater Interfaces.
            29.  Hassanajili S, Karami-Pour A, Oryan A, Talaei-Khozani   2019;11(26):23546-23557.
               T. Preparation and characterization of PLA/PCL/HA      doi: 10.1021/acsami.9b03766
               composite scaffolds using indirect  3D printing for bone
               tissue engineering.  Mater Sci Eng C Mater Biol Appl.   41.  Aymard G, Warot D, Démolis P, et al. Comparative
               2019;104:109960.                                   pharmacokinetics and pharmacodynamics of intravenous
               doi: 10.1016/j.msec.2019.109960                    and oral Nefopam in healthy volunteers*. Pharmacol Toxicol.
                                                                  2003;92(6):279-286.
            30.  Jia L, Hua Y, Zeng J, et al. Bioprinting and regeneration      doi: 10.1034/j.1600-0773.2003.920605.x
               of auricular cartilage using a bioactive bioink based on
               microporous photocrosslinkable acellular cartilage matrix.   42.  Loew D, Schuster O, Graul EH. Dose-dependent
               Bioact Mater. 2022;16:66-81.                       pharmacokinetics of dexamethasone. Eur J Clin Pharmacol.
               doi: 10.1016/j.bioactmat.2022.02.032               1986;30(2):225-230.
                                                                  doi: 10.1007/bf00614309
            31.  Lim KS, Galarraga JH, Cui X, Lindberg GCJ, Burdick JA,
               Woodfield  TBF. Fundamentals  and  applications  of  photo-  43.  Yang J, Wu H, Zhang P, Hou DM, Chen J, Zhang SG.
               cross-linking in bioprinting.  Chem Rev. 2020;120(19):   The pharmacokinetic profiles of dexamethasone and
               10662-10694.                                       methylprednisolone concentration in perilymph and
               doi: 10.1021/acs.chemrev.9b00812                   plasma  following  systemic  and  local administration.  Acta
                                                                  Otolaryngol. 2008;128(5):496-504.
            32.  Kim SH, Hong H, Ajiteru O, et al. 3D bioprinted silk      doi: 10.1080/00016480701558906
               fibroin  hydrogels  for  tissue engineering.  Nat Protoc.
               2021;16(12):5484-5532.                          44.  Wang H, Zhao P, Su W, et al. PLGA/polymeric liposome
               doi: 10.1038/s41596-021-00622-1                    for targeted drug and gene co-delivery.  Biomaterials.
                                                                  2010;31(33):8741-8748.
            33.  Gillispie G, Prim P, Copus J, et al. Assessment methodologies
               for extrusion-based bioink printability.  Biofabrication.      doi: 10.1016/j.biomaterials.2010.07.082
               2020;12(2):022003.                              45.  Jin L, Pan Y, Pham AC, Boyd BJ, Norton RS, Nicolazzo
               doi: 10.1088/1758-5090/ab6f0d                      JA.  Prolonged  plasma  exposure  of  the  Kv1.3-inhibitory


            Volume 10 Issue 5 (2024)                       404                                doi: 10.36922/ijb.3396
   407   408   409   410   411   412   413   414   415   416   417