Page 17 - IJB-6-2
P. 17

Agarwala
           45.  Sasaki  M,  Karikkineth  BC,  Nagamine  K,  et al.,  2014,   Nanoparticle-based  Hydrogels  Prepared  Via  Self-initiated
               Highly  Conductive  Stretchable  and  Biocompatible   Polymerization Under Sunlight, Even Visible Light. Sci Rep,
               Electrode-Hydrogel  Hybrids  for  Advanced  Tissue   3:1399. DOI: 10.1038/srep01399.
               Engineering.  Adv Healthc Mater,  3:1919–27.  DOI:   57.  Vaezi  M,  Chianrabutra  S,  Mellor  B,  et  al.,  2013.
               10.1002/adhm.201400209.                             Multiple   Material   Additive   Manufacturing-Part   1:
           46.  Dai  TY,  Qing  XT,  Zhou  H,  et al.,  2010,  Mechanically   A  Review.  Virtual  Phys  Prototyp,  8:19–50.  DOI:
               Strong  Conducting  Hydrogels  with  Special  Double-  10.1080/17452759.2013.778175.
               network  Structure.  Synth Met,  160:791–6.  DOI:  10.1016/j.  58.  Cheng K, Mukherjee P, Curthoys I, 2017, Development and
               synthmet.2010.01.024.                               Use  of Augmented  Reality  and  3D  Printing  in  Consulting
           47.  Elyashevich  GK,  Smirnov  MA,  2012,  New  pH-responsive   Patient with Complex Skull Base Cholesteatoma. Virtual Phys
               and Electroactive Composite Systems Containing Hydrogels   Prototyp, 12:241–8. DOI: 10.1080/17452759.2017.1310050.
               and Conductive Polymers on a Porous Matrix. Polym Sci A,   59.  Espalin  D,  Muse  DW,  MacDonald  E,  et al.,  2014,  3D
               54:900–8. DOI: 10.1134/s0965545x12110028.           Printing Multifunctionality: Structures with Electronics. Int
           48.  Dai TY, Qing XT, Xia YY, 2009, Conducting Hydrogels with   J  Adv Manuf Technol,  72:963–78.  DOI:  10.1007/s00170-
               Enhanced Mechanical Strength. Polymer, 50:5236–41. DOI:   014-5717-7.
               10.1016/j.polymer.2009.09.025.                  60.  Zhao D, Liu T, Park JG, 2012, Conductivity Enhancement of
           49.  Wang  YQ,  Shi  Y,  Pan  LJ, et  al.,  2015,  Dopant-enabled   Aerosol-jet Printed Electronics by Using Silver Nanoparticles
               Supramolecular  Approach  for  Controlled  Synthesis  of   Ink  with  Carbon  Nanotubes.  Microelectron Eng,  96:71–5.
               Nanostructured Conductive Polymer Hydrogels. Nano Lett,   DOI: 10.1016/j.mee.2012.03.004.
               15:7736–41. DOI: 10.1021/acs.nanolett.5b03891.  61.  Wang S, Lee JM, Yeong WY, 2015, Smart Hydrogels for 3D
           50.  Sershen  SR,  Westcott  SL,  Halas  NH,  et  al.,  2002,   Bioprinting. Int J Bioprint, 1:3–14.
               Independent  Optically  Addressable  Nanoparticle-polymer   62.  Murphy SV, Atala A, 2014, 3D Bioprinting of Tissues and
               Optomechanical  Composites.  Appl Phys Lett,  80:4609.   Organs. Nat Biotechnol, 32:773–85. DOI: 10.1038/nbt.2958.
               DOI: 10.1063/1.1481536.                         63.  Cui H, Nowicki M, Fisher JP, et al., 2017, 3D Bioprinting
           51.  Pardo-Yissar  V,  Gabai  R,  Shipway  AN,  et  al.,  2001,   for  Organ  Regeneration.  Adv Healthc Mater,  6:  1601118.
               Gold  Nanoparticle/Hydrogel  Composites  with  Solvent‐  DOI: 10.1002/adhm.201601118.
               Switchable  Electronic  Properties.  Adv  Mater,  13:1320–3.   64.  Lee JM, Ng WL, Yeong WY, 2019, Resolution and Shape
               DOI:      10.1002/1521-4095(200109)13:17<1320::aid-  in  Bioprinting:  Strategizing  Towards  Complex  Tissue
               adma1320>3.0.co;2-8.                                and  Organ  Printing.  Appl  Phys  Rev,  6(1):011307.  DOI:
           52.  Wang  C,  Flynn  NT,  Langer  R,  2004,  Controlled  Structure   10.1063/1.5053909.
               and Properties of Thermoresponsive Nanoparticle-hydrogel   65.  Landers  R,  Mülhaupt  R,  2000,  Desktop  Manufacturing  of
               Composites.  Adv  Mater,  16:1074–9.  DOI:  10.1002/  Complex  Objects,  Prototypes  and  Biomedical  Scaffolds
               adma.200306516.                                     by  Means  of  Computer-assisted  Design  Combined
           53.  Souza  GR,  Christianson  DR,  Staquicini  FI,  et al.,  2006,   with  Computer-guided  3D  Plotting  of  Polymers  and
               Networks  of  Gold  Nanoparticles  and  Bacteriophage   Reactive  Oligomers.  Macromol Mater Eng,  282:17–21.
               as  Biological  Sensors  and  Cell-targeting  Agents.  Proc   DOI:   10.1002/1439-2054(20001001)282:1<17::aid-
               Natl Acad  Sci USA,  103:1215–20.  DOI:  10.1073/   mame17>3.0.co;2-8.
               pnas.0509739103.                                66.  Sun  J,  Ng  JH,  Fuh  YH,  et  al.,  2009,  Comparison  of
           54.  Wu  H,  Yu  G,  Pan  L,  et al.,  2013,  Stable  Li-ion  Battery   Micro-dispensing  Performance  Between  Micro-valve  and
               Anodes by In situ Polymerization of Conducting Hydrogel   Piezoelectric  Printhead.  Microsyst Technol,  15:1437–48.
               to  Conformally  Coat  Silicon  Nanoparticles.  Nat Commun,   DOI: 10.1007/s00542-009-0905-3.
               4:1943. DOI: 10.1038/ncomms2941.                67.  Chua  CK,  Leong  KF,  2015,  3D  Printing  and  Additive
           55.  Saravanan P, Raju MP, Alam S, 2007, A Study on Synthesis and   Manufacturing: Principles and Applications. 4  ed. Singapore:
                                                                                                   th
               Properties of Ag Nanoparticles Immobilized Polyacrylamide   World Scientific Publishing.
               Hydrogel Composites. Mater Chem Phys, 103:278–82. DOI:   68.  Luo  Y,  Lode  A,  Akkineni  AR,  et  al.,  2015,  Concentrated
               10.1016/j.matchemphys.2007.02.025.                  Gelatin/alginate Composites for Fabrication of Predesigned
           56.  Zhang  D,  Yang  J,  Bao  S,  et  al.,  2013,  Semiconductor   Scaffolds  with  a  Favorable  Cell  Response  by  3D  Plotting.

                                       International Journal of Bioprinting (2020)–Volume 6, Issue 2        13
   12   13   14   15   16   17   18   19   20   21   22