Page 17 - IJB-6-2
P. 17
Agarwala
45. Sasaki M, Karikkineth BC, Nagamine K, et al., 2014, Nanoparticle-based Hydrogels Prepared Via Self-initiated
Highly Conductive Stretchable and Biocompatible Polymerization Under Sunlight, Even Visible Light. Sci Rep,
Electrode-Hydrogel Hybrids for Advanced Tissue 3:1399. DOI: 10.1038/srep01399.
Engineering. Adv Healthc Mater, 3:1919–27. DOI: 57. Vaezi M, Chianrabutra S, Mellor B, et al., 2013.
10.1002/adhm.201400209. Multiple Material Additive Manufacturing-Part 1:
46. Dai TY, Qing XT, Zhou H, et al., 2010, Mechanically A Review. Virtual Phys Prototyp, 8:19–50. DOI:
Strong Conducting Hydrogels with Special Double- 10.1080/17452759.2013.778175.
network Structure. Synth Met, 160:791–6. DOI: 10.1016/j. 58. Cheng K, Mukherjee P, Curthoys I, 2017, Development and
synthmet.2010.01.024. Use of Augmented Reality and 3D Printing in Consulting
47. Elyashevich GK, Smirnov MA, 2012, New pH-responsive Patient with Complex Skull Base Cholesteatoma. Virtual Phys
and Electroactive Composite Systems Containing Hydrogels Prototyp, 12:241–8. DOI: 10.1080/17452759.2017.1310050.
and Conductive Polymers on a Porous Matrix. Polym Sci A, 59. Espalin D, Muse DW, MacDonald E, et al., 2014, 3D
54:900–8. DOI: 10.1134/s0965545x12110028. Printing Multifunctionality: Structures with Electronics. Int
48. Dai TY, Qing XT, Xia YY, 2009, Conducting Hydrogels with J Adv Manuf Technol, 72:963–78. DOI: 10.1007/s00170-
Enhanced Mechanical Strength. Polymer, 50:5236–41. DOI: 014-5717-7.
10.1016/j.polymer.2009.09.025. 60. Zhao D, Liu T, Park JG, 2012, Conductivity Enhancement of
49. Wang YQ, Shi Y, Pan LJ, et al., 2015, Dopant-enabled Aerosol-jet Printed Electronics by Using Silver Nanoparticles
Supramolecular Approach for Controlled Synthesis of Ink with Carbon Nanotubes. Microelectron Eng, 96:71–5.
Nanostructured Conductive Polymer Hydrogels. Nano Lett, DOI: 10.1016/j.mee.2012.03.004.
15:7736–41. DOI: 10.1021/acs.nanolett.5b03891. 61. Wang S, Lee JM, Yeong WY, 2015, Smart Hydrogels for 3D
50. Sershen SR, Westcott SL, Halas NH, et al., 2002, Bioprinting. Int J Bioprint, 1:3–14.
Independent Optically Addressable Nanoparticle-polymer 62. Murphy SV, Atala A, 2014, 3D Bioprinting of Tissues and
Optomechanical Composites. Appl Phys Lett, 80:4609. Organs. Nat Biotechnol, 32:773–85. DOI: 10.1038/nbt.2958.
DOI: 10.1063/1.1481536. 63. Cui H, Nowicki M, Fisher JP, et al., 2017, 3D Bioprinting
51. Pardo-Yissar V, Gabai R, Shipway AN, et al., 2001, for Organ Regeneration. Adv Healthc Mater, 6: 1601118.
Gold Nanoparticle/Hydrogel Composites with Solvent‐ DOI: 10.1002/adhm.201601118.
Switchable Electronic Properties. Adv Mater, 13:1320–3. 64. Lee JM, Ng WL, Yeong WY, 2019, Resolution and Shape
DOI: 10.1002/1521-4095(200109)13:17<1320::aid- in Bioprinting: Strategizing Towards Complex Tissue
adma1320>3.0.co;2-8. and Organ Printing. Appl Phys Rev, 6(1):011307. DOI:
52. Wang C, Flynn NT, Langer R, 2004, Controlled Structure 10.1063/1.5053909.
and Properties of Thermoresponsive Nanoparticle-hydrogel 65. Landers R, Mülhaupt R, 2000, Desktop Manufacturing of
Composites. Adv Mater, 16:1074–9. DOI: 10.1002/ Complex Objects, Prototypes and Biomedical Scaffolds
adma.200306516. by Means of Computer-assisted Design Combined
53. Souza GR, Christianson DR, Staquicini FI, et al., 2006, with Computer-guided 3D Plotting of Polymers and
Networks of Gold Nanoparticles and Bacteriophage Reactive Oligomers. Macromol Mater Eng, 282:17–21.
as Biological Sensors and Cell-targeting Agents. Proc DOI: 10.1002/1439-2054(20001001)282:1<17::aid-
Natl Acad Sci USA, 103:1215–20. DOI: 10.1073/ mame17>3.0.co;2-8.
pnas.0509739103. 66. Sun J, Ng JH, Fuh YH, et al., 2009, Comparison of
54. Wu H, Yu G, Pan L, et al., 2013, Stable Li-ion Battery Micro-dispensing Performance Between Micro-valve and
Anodes by In situ Polymerization of Conducting Hydrogel Piezoelectric Printhead. Microsyst Technol, 15:1437–48.
to Conformally Coat Silicon Nanoparticles. Nat Commun, DOI: 10.1007/s00542-009-0905-3.
4:1943. DOI: 10.1038/ncomms2941. 67. Chua CK, Leong KF, 2015, 3D Printing and Additive
55. Saravanan P, Raju MP, Alam S, 2007, A Study on Synthesis and Manufacturing: Principles and Applications. 4 ed. Singapore:
th
Properties of Ag Nanoparticles Immobilized Polyacrylamide World Scientific Publishing.
Hydrogel Composites. Mater Chem Phys, 103:278–82. DOI: 68. Luo Y, Lode A, Akkineni AR, et al., 2015, Concentrated
10.1016/j.matchemphys.2007.02.025. Gelatin/alginate Composites for Fabrication of Predesigned
56. Zhang D, Yang J, Bao S, et al., 2013, Semiconductor Scaffolds with a Favorable Cell Response by 3D Plotting.
International Journal of Bioprinting (2020)–Volume 6, Issue 2 13

