Page 18 - IJB-6-2
P. 18
Electrically conducting hydrogels for health care: Concept, fabrication methods, and applications
RSC Adv, 5:43480–8. DOI: 10.1039/c5ra04308e. Amperometric Glucose Biosensors for In vivo Monitoring.
69. Sun C, Fang N, Wu DM, et al., 2005, Projection Physiol Meas, 16:1–15. DOI: 10.1088/0967-3334/16/1/001.
Microstereolithography Using Digital Micro-mirror Dynamic 83. Wisniewski N, Moussy F, Reichert WM, 2000, Characterization
Mask. Sens Actuators A Phys, 121:113–20. DOI: 10.1016/j. of Implantable Biosensor Membrane Biofouling. Fresenius J
sna.2004.12.011. Anal Chem, 366:611–21. DOI: 10.1007/s002160051556.
70. Hölzl K, Lin S, Tytgat L, et al., 2016, Bioink Properties 84. Abraham S, Brahim S, Ishihara K, et al., 2005, Molecularly
Before, During and after 3D Bioprinting. Biofabrication, Engineered p(HEMA)-Based Hydrogels for Implant Biochip
8:032002. DOI: 10.1088/1758-5090/8/3/032002. Biocompatibility. Biomaterials, 26:4767–78. DOI: 10.1016/j.
71. Jang TS, Jung HD, Pan HM, et al., 2017, 3D Printing biomaterials.2005.01.031.
of Hydrogel Composite Systems: Recent Advances in 85. Saha S, Sarkar P, Sarkar M, et al., 2015, Electroconductive
Technology for Tissue Engineering. Int J Bioprint, 4:1–28. Smart Polyacrylamide-polypyrrole (PAC-PPY) Hydrogel: A
72. Donderwinkel I, van Hest JC, Cameron NR, 2017, Bio-inks Device for Controlled Release of Risperidone. RSC Adv, 5,
for 3D Bioprinting: Recent Advances and Future Prospects. 27665–73. DOI: 10.1039/c5ra03535j.
Polym Chem, 8:4451–71. DOI: 10.1039/c7py00826k. 86. Tao Y, Cheng G, Zhang M, et al., 2015, A General Route to
73. Sayyar S, Gambhir S, Chung J, et al., 2017, 3D Printable 2D Nanoleaves and Nanoplates of Polyaniline. Russ J Phys
Conducting Hydrogels Containing Chemically Converted Chem A, 89:2267–70.
Graphene. Nanoscale, 9:2038–50. DOI: 10.1039/c6nr07516a. 87. Sharma K, Kaith BS, Kumar V, et al., 2014, Gum Ghatti
74. Fantino E, Roppolo I, Zhang D, et al., 2018, 3D Printing/ Based Novel Electrically Conductive Biomaterials: A Study
Interfacial Polymerization Coupling for the Fabrication of of Conductivity and Surface Morphology. Express Polym
Conductive Hydrogel. Macromol Mater Eng, 303:1700356. Lett, 8:267–81. DOI: 10.3144/expresspolymlett.2014.30.
DOI: 10.1002/mame.201700356. 88. Sharma K, Kumar V, Kaith BS, et al., 2015, Evaluation Of
75. Odent J, Wallin TJ, Pan W, et al., 2017, Highly Elastic, Conducting Interpenetrating Network Based On Gum Ghatti-
Transparent, and Conductive 3D-Printed Ionic Composite G-Poly (Acrylic Acid-Aniline) As Colon-Specific Delivery
Hydrogels. Adv Funct Mater, 27:1701807. DOI: 10.1002/ For Amoxicillin Trihydrate And Paracetamol. New J Chem,
adfm.201701807. 39:3021–34. DOI: 10.1039/c4nj01982b.
76. Zhou Y, Layani M, Wang S, et al., 2018, Fully Printed Flexible 89. Sharma K, Kumar V, Chaudhary B, et al., 2016, Application
Smart Hybrid Hydrogels. Adv Funct Mater, 28:1705365. of Biodegradable Superabsorbent Hydrogel Composite
DOI: 10.1002/adfm.201705365. Based on Gum Ghatti-co-poly (Acrylic Acid-aniline) for
77. Heo DN, Lee SJ, Timsina R, et al., 2019, Development of 3D Controlled Drug Delivery. Polym Degrad Stab, 124:101–11.
Printable Conductive Hydrogel with Crystallized PEDOT: DOI: 10.1016/j.polymdegradstab.2015.12.021.
PSS for Neural Tissue Engineering. Mater Sci Eng C Mater 90. Tandon B, Magaz A, Balint R, et al., 2018, Electroactive
Biol Appl, 99:582–90. DOI: 10.1016/j.msec.2019.02.008. Biomaterials: Vehicles for Controlled Delivery of
78. Sekine S, Ido Y, Miyake T, et al., 2010, Conducting Polymer Therapeutic Agents for Drug Delivery and Tissue
Electrodes Printed on Hydrogel. J Am Chem Soc, 132:13174– Regeneration. Adv Drug Deliv Rev, 129:148–68. DOI:
5. DOI: 10.1021/ja1062357. 10.1016/j.addr.2017.12.012.
79. Ahn Y, Lee H, Lee D, et al., 2014, Highly Conductive 91. Weaver CL, LaRosa JM, Luo X, et al., 2014, Electrically
and Flexible Silver Nanowire-Based Microelectrodes on Controlled Drug Delivery from Graphene Oxide
Biocompatible Hydrogel. ACS Appl Mater Interfaces, 6: Nanocomposite Films. ACS Nano, 8:1834–43. DOI: 10.1021/
18401–7. DOI: 10.1021/am504462f. nn406223e.
80. Shay T, Velev OD, Dickey MD, 2018, Soft Electrodes 92. Catt K, Li H, Hoang V, et al., 2018, Self-powered Therapeutic
Combining Hydrogel and Liquid Metal. Soft Matter, Release from Conducting Polymer/graphene Oxide Films on
14:3296–303. DOI: 10.1039/c8sm00337h. Magnesium. Nanomed Nanotechnol Biol Med, 14:2495–503.
81. Agarwala S, Lee JM, Ng WL, et al., 2018, A Novel DOI: 10.1016/j.nano.2017.02.021.
3D Bioprinted Flexible and Biocompatible Hydrogel 93. Balint R, Cassidy NJ, Cartmell SH, 2014, Conductive
Bioelectronic Platform. Biosens Bioelectron, 102:365–71. Polymers: Towards a Smart Biomaterial for Tissue
DOI: 10.1016/j.bios.2017.11.039. Engineering. Acta Biomater, 10:2341–53. DOI: 10.1016/j.
82. Jaffari SA, Turner AP, 1995, Recent Advances in actbio.2014.02.015.
14 International Journal of Bioprinting (2020)–Volume 6, Issue 2

