Page 18 - IJB-6-2
P. 18

Electrically conducting hydrogels for health care: Concept, fabrication methods, and applications
               RSC Adv, 5:43480–8. DOI: 10.1039/c5ra04308e.        Amperometric  Glucose  Biosensors for  In vivo  Monitoring.
           69.  Sun  C,  Fang  N,  Wu  DM,  et  al.,  2005,  Projection   Physiol Meas, 16:1–15. DOI: 10.1088/0967-3334/16/1/001.
               Microstereolithography Using Digital Micro-mirror Dynamic   83.  Wisniewski N, Moussy F, Reichert WM, 2000, Characterization
               Mask. Sens Actuators A Phys, 121:113–20. DOI: 10.1016/j.  of Implantable Biosensor Membrane Biofouling. Fresenius J
               sna.2004.12.011.                                    Anal Chem, 366:611–21. DOI: 10.1007/s002160051556.
           70.  Hölzl  K,  Lin  S,  Tytgat  L,  et al.,  2016,  Bioink  Properties   84.  Abraham S, Brahim S, Ishihara K, et al., 2005, Molecularly
               Before,  During  and  after  3D  Bioprinting.  Biofabrication,   Engineered p(HEMA)-Based Hydrogels for Implant Biochip
               8:032002. DOI: 10.1088/1758-5090/8/3/032002.        Biocompatibility. Biomaterials, 26:4767–78. DOI: 10.1016/j.
           71.  Jang  TS,  Jung  HD,  Pan  HM,  et al.,  2017,  3D  Printing   biomaterials.2005.01.031.
               of  Hydrogel  Composite  Systems:  Recent  Advances  in   85.  Saha S, Sarkar P, Sarkar M, et al., 2015, Electroconductive
               Technology for Tissue Engineering. Int J Bioprint, 4:1–28.  Smart Polyacrylamide-polypyrrole (PAC-PPY) Hydrogel: A
           72.  Donderwinkel I, van Hest JC, Cameron NR, 2017, Bio-inks   Device for Controlled Release of Risperidone. RSC Adv, 5,
               for 3D Bioprinting: Recent Advances and Future Prospects.   27665–73. DOI: 10.1039/c5ra03535j.
               Polym Chem, 8:4451–71. DOI: 10.1039/c7py00826k.  86.  Tao Y, Cheng G, Zhang M, et al., 2015, A General Route to
           73.  Sayyar  S,  Gambhir  S,  Chung  J,  et al.,  2017,  3D  Printable   2D Nanoleaves and Nanoplates of Polyaniline. Russ J Phys
               Conducting Hydrogels Containing Chemically  Converted   Chem A, 89:2267–70.
               Graphene. Nanoscale, 9:2038–50. DOI: 10.1039/c6nr07516a.  87.  Sharma  K,  Kaith  BS,  Kumar  V,  et  al.,  2014,  Gum  Ghatti
           74.  Fantino E, Roppolo I, Zhang D, et al., 2018, 3D Printing/  Based Novel Electrically Conductive Biomaterials: A Study
               Interfacial  Polymerization  Coupling  for  the  Fabrication  of   of  Conductivity  and  Surface  Morphology.  Express  Polym
               Conductive Hydrogel. Macromol Mater Eng, 303:1700356.   Lett, 8:267–81. DOI: 10.3144/expresspolymlett.2014.30.
               DOI: 10.1002/mame.201700356.                    88.  Sharma K, Kumar V, Kaith BS, et al., 2015, Evaluation Of
           75.  Odent  J,  Wallin  TJ,  Pan  W,  et al.,  2017,  Highly  Elastic,   Conducting Interpenetrating Network Based On Gum Ghatti-
               Transparent,  and  Conductive  3D-Printed  Ionic  Composite   G-Poly  (Acrylic Acid-Aniline) As  Colon-Specific  Delivery
               Hydrogels.  Adv  Funct  Mater,  27:1701807.  DOI:  10.1002/  For Amoxicillin Trihydrate And Paracetamol. New J Chem,
               adfm.201701807.                                     39:3021–34. DOI: 10.1039/c4nj01982b.
           76.  Zhou Y, Layani M, Wang S, et al., 2018, Fully Printed Flexible   89.  Sharma K, Kumar V, Chaudhary B, et al., 2016, Application
               Smart  Hybrid  Hydrogels.  Adv  Funct  Mater,  28:1705365.   of  Biodegradable  Superabsorbent  Hydrogel  Composite
               DOI: 10.1002/adfm.201705365.                        Based  on  Gum  Ghatti-co-poly  (Acrylic  Acid-aniline)  for
           77.  Heo DN, Lee SJ, Timsina R, et al., 2019, Development of 3D   Controlled Drug Delivery. Polym Degrad Stab, 124:101–11.
               Printable  Conductive  Hydrogel  with  Crystallized  PEDOT:   DOI: 10.1016/j.polymdegradstab.2015.12.021.
               PSS for Neural Tissue Engineering. Mater Sci Eng C Mater   90.  Tandon B, Magaz A, Balint R, et al., 2018, Electroactive
               Biol Appl, 99:582–90. DOI: 10.1016/j.msec.2019.02.008.  Biomaterials:  Vehicles  for  Controlled  Delivery  of
           78.  Sekine S, Ido Y, Miyake T, et al., 2010, Conducting Polymer   Therapeutic  Agents  for  Drug  Delivery  and  Tissue
               Electrodes Printed on Hydrogel. J Am Chem Soc, 132:13174–  Regeneration.  Adv Drug Deliv Rev,  129:148–68.  DOI:
               5. DOI: 10.1021/ja1062357.                          10.1016/j.addr.2017.12.012.
           79.  Ahn  Y,  Lee  H,  Lee  D,  et al.,  2014,  Highly  Conductive   91.  Weaver  CL,  LaRosa  JM,  Luo  X,  et  al.,  2014,  Electrically
               and  Flexible  Silver  Nanowire-Based  Microelectrodes  on   Controlled  Drug  Delivery  from  Graphene   Oxide
               Biocompatible  Hydrogel.  ACS  Appl Mater Interfaces, 6:   Nanocomposite Films. ACS Nano, 8:1834–43. DOI: 10.1021/
               18401–7. DOI: 10.1021/am504462f.                    nn406223e.
           80.  Shay  T,  Velev  OD,  Dickey  MD,  2018,  Soft  Electrodes   92.  Catt K, Li H, Hoang V, et al., 2018, Self-powered Therapeutic
               Combining  Hydrogel  and  Liquid  Metal.  Soft Matter,   Release from Conducting Polymer/graphene Oxide Films on
               14:3296–303. DOI: 10.1039/c8sm00337h.               Magnesium. Nanomed Nanotechnol Biol Med, 14:2495–503.
           81.  Agarwala  S,  Lee  JM,  Ng  WL,  et  al.,  2018,  A  Novel   DOI: 10.1016/j.nano.2017.02.021.
               3D  Bioprinted  Flexible  and  Biocompatible  Hydrogel   93.  Balint  R,  Cassidy  NJ,  Cartmell  SH,  2014,  Conductive
               Bioelectronic  Platform.  Biosens Bioelectron,  102:365–71.   Polymers:  Towards  a  Smart  Biomaterial  for  Tissue
               DOI: 10.1016/j.bios.2017.11.039.                    Engineering.  Acta Biomater,  10:2341–53.  DOI:  10.1016/j.
           82.  Jaffari  SA,  Turner  AP,  1995,  Recent  Advances  in   actbio.2014.02.015.

           14                          International Journal of Bioprinting (2020)–Volume 6, Issue 2
   13   14   15   16   17   18   19   20   21   22   23