Page 16 - IJB-6-2
P. 16

Electrically conducting hydrogels for health care: Concept, fabrication methods, and applications
               DOI: 10.1063/1.5063657.                             of  Iodine  Doped  Polyaniline-Reduced  Graphene  Oxide
           21.  Cho  Y,  Borgens  RB,  2010,  The  Effect  of  An  Electrically   Composite  Hydrogel  with  High  Capacitative  Properties.
               Conductive  Carbon  Nanotube/Collagen  Composite  on   Compos Sci Technol, 109:12–7.
               Neurite Outgrowth of PC12 Cells. J Biomed Mater Res A,   33.  Zhang  L,  Shi  G,  2011,  Preparation  of  Highly  Conductive
               95:510–7. DOI: 10.1002/jbm.a.32841.                 Graphene  Hydrogels  for  Fabricating  Supercapacitors  with
           22.  Shin  SR,  Jung  SM,  Zalabany  M,  et al.,  2013,  Carbon-  High Rate Capability. J Phys Chem C, 115:17206–12. DOI:
               nanotube-embedded  Hydrogel  Sheets  for  Engineering   10.1021/jp204036a.
               Cardiac Constructs and Bioactuators. ACS Nano, 7:2369–80.   34.  Xu  Y,  Lin  Z,  Huang  X,  et al.,  2013,  Flexible  Solid-state
               DOI: 10.1021/nn305559j.                             Supercapacitors  Based  on  Three-dimensional  Graphene
           23.  Pok S, Vitale F, Eichmann SL, et al., 2014, Biocompatible   Hydrogel  Films.  ACS Nano,  7:4042–9.  DOI:  10.1021/
               Carbon Nanotube Chitosan Scaffold Matching the Electrical   nn4000836.
               Conductivity  of  the  Heart.  ACS  Nano,  8:9822–32.  DOI:   35.  Moughton  AO,  Hillmyer  MA,  Lodge  TP,  2012,
               10.1021/nn503693h.                                  Multicompartment Block Polymer Micelles. Macromolecules,
           24.  Liu XW, Huang YX, Sun XF, et al., 2014, Conductive Carbon   45:2-19. DOI: 10.1021/ma201865s.
               Nanotube Hydrogel as a Bioanode for Enhanced Microbial   36.  Li  GL,  Mohwald  H,  Shchukin  DG,  2013,  Precipitation
               Electrocatalysis.  ACS  Appl  Mater  Interfaces,  6:8158−64.   Polymerization for Fabrication of Complex Core-shell Hybrid
               DOI: 10.1021/am500624k.                             Particles and Hollow Structures. Chem Soc Rev, 42:3628–46.
           25.  Chen Z, To JW, Wang C, et al., 2014, A Three-dimensionally   DOI: 10.1039/c3cs35517a.
               Interconnected  Carbon  Nanotube-conducting  Polymer   37.  Schlüter AD, Halperin A, Kröger M, et al., 2014, Dendronized
               Hydrogel  Network  for  High-performance  Flexible  Battery   Polymers: Molecular Objects Between Conventional Linear
               Electrodes.  Adv  Energy  Mater,  4:1400207.  DOI:  10.1002/  Polymers and Colloidal Particles. ACS Macro Lett, 3:991–8.
               aenm.201400207.                                     DOI: 10.1021/mz500376e.
           26.  Kumar GG, Hashmi S, Karthikeyan C, et al., 2014, Graphene   38.  McLeish  TC,  2007,  Macromolecular  Engineering:  Precise
               Oxide/Carbon  Nanotube  Composite  Hydrogels-Versatile   Synthesis,  Materials  Properties,  Applications.  Weinheim,
               Materials  for  Microbial  Fuel  Cell Applications.  Macromol   Germany: Wiley-VCH. p1605.
               Rapid Commun, 35:1861–5. DOI: 10.1002/marc.201400332.  39.  Shi  XW,  Hu  YL,  Tu  K,  et al.,  2013,  Electromechanical
           27.  Chen PY, Courchesne NM, Hyder MN, et al., 2015, Carbon   Polyaniline-cellulose  Hydrogels  with  High  Compressive
               Nanotube-polyaniline  Core-shell  Nanostructured  Hydrogel   Strength.  Soft  Matter,  9:10129–34.  DOI:  10.1039/
               for  Electrochemical  Energy  Storage.  RSC Adv,  5:37970–  c3sm51490k.
               9977. DOI: 10.1039/c5ra02944a.                  40.  Liang XT, Qu B, Li JR, et al., 2015, Preparation of Cellulose-
           28.  Sayyar S, Murray E, Thompson BC, et al., 2015, Processable   based Conductive Hydrogels with Ionic Liquid. React Funct
               Conducting  Graphene/Chitosan  Hydrogels  for  Tissue   Polym, 86:1–6.
               Engineering. J Mater Chem B, 3:481-90.          41.  Gilmore K, Hodgson AJ, Luan B, et al., 1994, Preparation
           29.  Jo H, Sim M, Kim S, et al., 2017, Electrically Conductive   of  Hydrogel/conducting  Polymer  Composites.  Polym Gels
               Graphene/Polyacrylamide  Hydrogels Produced by Mild   Netw, 2:135–43. DOI: 10.1016/0966-7822(94)90032-9.
               Chemical  Reduction  for  Enhanced  Myoblast  Growth  and   42.  Yang B, Yao F, Hao T, et al., 2016, Development of Electrically
               Differentiation.  Acta  Biomater,  48:100–9.  DOI:  10.1016/j.  Conductive Double-Network Hydrogels via One-Step Facile
               actbio.2016.10.035.                                 Strategy for Cardiac Tissue Engineering. Adv Healthc Mater,
           30.  Alam A, Meng Q, Shi G, et al., 2016, Electrically Conductive,   5:474–88. DOI: 10.1002/adhm.201500520.
               Mechanically  Robust,  pH-sensitive  Graphene/Polymer   43.  Xiao YH, He L, Che JF, 2012, An Effective Approach for the
               Composite  Hydrogels.  Compos Sci Technol,  127:119–26.   Fabrication of Reinforced Composite Hydrogel Engineered
               DOI: 10.1016/j.compscitech.2016.02.024.             with  SWNTs,  Polypyrrole  and  PEGDA  Hydrogel.  J Mater
           31.  Baniasadi H, Ramazani AS, Mashayekhan S, 2015, Fabrication   Chem, 22:8076–82. DOI: 10.1039/c2jm30601h.
               and Characterization of Conductive Chitosan/Gelatin-Based   44.  Kim YS, Cho K, Lee HJ, et al., 2016, Highly Conductive and
               Scaffolds for Nerve Tissue Engineering. Int J Biol Macromol,   Hydrated PEG-Based Hydrogels for the Potential Application
               74:360–6. DOI: 10.1016/j.ijbiomac.2014.12.014.      of  a  Tissue  Engineering  Scaffold.  React  Funct  Polym,
           32.  Wang  J,  Li  BY,  Ni  T,  et al.,  2015c,  One-step  Synthesis   109:15–22. DOI: 10.1016/j.reactfunctpolym.2016.09.003.

           12                          International Journal of Bioprinting (2020)–Volume 6, Issue 2
   11   12   13   14   15   16   17   18   19   20   21