Page 16 - IJB-6-2
P. 16
Electrically conducting hydrogels for health care: Concept, fabrication methods, and applications
DOI: 10.1063/1.5063657. of Iodine Doped Polyaniline-Reduced Graphene Oxide
21. Cho Y, Borgens RB, 2010, The Effect of An Electrically Composite Hydrogel with High Capacitative Properties.
Conductive Carbon Nanotube/Collagen Composite on Compos Sci Technol, 109:12–7.
Neurite Outgrowth of PC12 Cells. J Biomed Mater Res A, 33. Zhang L, Shi G, 2011, Preparation of Highly Conductive
95:510–7. DOI: 10.1002/jbm.a.32841. Graphene Hydrogels for Fabricating Supercapacitors with
22. Shin SR, Jung SM, Zalabany M, et al., 2013, Carbon- High Rate Capability. J Phys Chem C, 115:17206–12. DOI:
nanotube-embedded Hydrogel Sheets for Engineering 10.1021/jp204036a.
Cardiac Constructs and Bioactuators. ACS Nano, 7:2369–80. 34. Xu Y, Lin Z, Huang X, et al., 2013, Flexible Solid-state
DOI: 10.1021/nn305559j. Supercapacitors Based on Three-dimensional Graphene
23. Pok S, Vitale F, Eichmann SL, et al., 2014, Biocompatible Hydrogel Films. ACS Nano, 7:4042–9. DOI: 10.1021/
Carbon Nanotube Chitosan Scaffold Matching the Electrical nn4000836.
Conductivity of the Heart. ACS Nano, 8:9822–32. DOI: 35. Moughton AO, Hillmyer MA, Lodge TP, 2012,
10.1021/nn503693h. Multicompartment Block Polymer Micelles. Macromolecules,
24. Liu XW, Huang YX, Sun XF, et al., 2014, Conductive Carbon 45:2-19. DOI: 10.1021/ma201865s.
Nanotube Hydrogel as a Bioanode for Enhanced Microbial 36. Li GL, Mohwald H, Shchukin DG, 2013, Precipitation
Electrocatalysis. ACS Appl Mater Interfaces, 6:8158−64. Polymerization for Fabrication of Complex Core-shell Hybrid
DOI: 10.1021/am500624k. Particles and Hollow Structures. Chem Soc Rev, 42:3628–46.
25. Chen Z, To JW, Wang C, et al., 2014, A Three-dimensionally DOI: 10.1039/c3cs35517a.
Interconnected Carbon Nanotube-conducting Polymer 37. Schlüter AD, Halperin A, Kröger M, et al., 2014, Dendronized
Hydrogel Network for High-performance Flexible Battery Polymers: Molecular Objects Between Conventional Linear
Electrodes. Adv Energy Mater, 4:1400207. DOI: 10.1002/ Polymers and Colloidal Particles. ACS Macro Lett, 3:991–8.
aenm.201400207. DOI: 10.1021/mz500376e.
26. Kumar GG, Hashmi S, Karthikeyan C, et al., 2014, Graphene 38. McLeish TC, 2007, Macromolecular Engineering: Precise
Oxide/Carbon Nanotube Composite Hydrogels-Versatile Synthesis, Materials Properties, Applications. Weinheim,
Materials for Microbial Fuel Cell Applications. Macromol Germany: Wiley-VCH. p1605.
Rapid Commun, 35:1861–5. DOI: 10.1002/marc.201400332. 39. Shi XW, Hu YL, Tu K, et al., 2013, Electromechanical
27. Chen PY, Courchesne NM, Hyder MN, et al., 2015, Carbon Polyaniline-cellulose Hydrogels with High Compressive
Nanotube-polyaniline Core-shell Nanostructured Hydrogel Strength. Soft Matter, 9:10129–34. DOI: 10.1039/
for Electrochemical Energy Storage. RSC Adv, 5:37970– c3sm51490k.
9977. DOI: 10.1039/c5ra02944a. 40. Liang XT, Qu B, Li JR, et al., 2015, Preparation of Cellulose-
28. Sayyar S, Murray E, Thompson BC, et al., 2015, Processable based Conductive Hydrogels with Ionic Liquid. React Funct
Conducting Graphene/Chitosan Hydrogels for Tissue Polym, 86:1–6.
Engineering. J Mater Chem B, 3:481-90. 41. Gilmore K, Hodgson AJ, Luan B, et al., 1994, Preparation
29. Jo H, Sim M, Kim S, et al., 2017, Electrically Conductive of Hydrogel/conducting Polymer Composites. Polym Gels
Graphene/Polyacrylamide Hydrogels Produced by Mild Netw, 2:135–43. DOI: 10.1016/0966-7822(94)90032-9.
Chemical Reduction for Enhanced Myoblast Growth and 42. Yang B, Yao F, Hao T, et al., 2016, Development of Electrically
Differentiation. Acta Biomater, 48:100–9. DOI: 10.1016/j. Conductive Double-Network Hydrogels via One-Step Facile
actbio.2016.10.035. Strategy for Cardiac Tissue Engineering. Adv Healthc Mater,
30. Alam A, Meng Q, Shi G, et al., 2016, Electrically Conductive, 5:474–88. DOI: 10.1002/adhm.201500520.
Mechanically Robust, pH-sensitive Graphene/Polymer 43. Xiao YH, He L, Che JF, 2012, An Effective Approach for the
Composite Hydrogels. Compos Sci Technol, 127:119–26. Fabrication of Reinforced Composite Hydrogel Engineered
DOI: 10.1016/j.compscitech.2016.02.024. with SWNTs, Polypyrrole and PEGDA Hydrogel. J Mater
31. Baniasadi H, Ramazani AS, Mashayekhan S, 2015, Fabrication Chem, 22:8076–82. DOI: 10.1039/c2jm30601h.
and Characterization of Conductive Chitosan/Gelatin-Based 44. Kim YS, Cho K, Lee HJ, et al., 2016, Highly Conductive and
Scaffolds for Nerve Tissue Engineering. Int J Biol Macromol, Hydrated PEG-Based Hydrogels for the Potential Application
74:360–6. DOI: 10.1016/j.ijbiomac.2014.12.014. of a Tissue Engineering Scaffold. React Funct Polym,
32. Wang J, Li BY, Ni T, et al., 2015c, One-step Synthesis 109:15–22. DOI: 10.1016/j.reactfunctpolym.2016.09.003.
12 International Journal of Bioprinting (2020)–Volume 6, Issue 2

