Page 32 - IJB-6-2
P. 32
3D-printed splint for mallet finger injury
FDM Process for Improvement of Mechanical Properties and Comparison of Wrist Splint Designs Using the Finite
and Production Cost. Rapid Prototyp J, 20:228–35. DOI: Element Method: Multi-material Three-dimensional
10.1108/rpj-10-2012-0091. Printing Compared to Typical Existing Practice with
20. Bodaghi M, Noroozi R, Zolfagharian A, et al., 2019, 4D Thermoplastics. Proc Inst Mech Eng H, 231:881–97. DOI:
Printing Self-morphing Structures. Materials, 12:1353. DOI: 10.1177/0954411917718221.
10.3390/ma12081353. 31. Dhanwal DK, Dennison EM, Harvey NC, et al., 2011,
21. Rahim TN, Abdullah AM, Akil HM, 2019, Recent Epidemiology of Hip Fracture: Worldwide Geographic
Developments in Fused Deposition Modeling-based 3D Variation. Indian J Orthop, 45:15–22. DOI: 10.4103/0019-
Printing of Polymers and their Composites. Polym Rev, 5413.73656.
59(4):589-624. DOI: 10.1080/15583724.2019.1597883. 32. Lee RJ, Mears SC, 2012, Greening of Orthopedic Surgery.
22. Jiang J, Xu X, Stringer J, 2019, Optimisation of Multi- Orthopedics, 35:e940–4. DOI: 10.3928/01477447-20120525-39.
part Production in Additive Manufacturing for Reducing 33. Teo AJ, Mishra A, Park I, et al., 2016, Polymeric Biomaterials
Support Waste. Virtual Phys Prototyp, 14:219–28. DOI: for Medical Implants and Devices. ACS Biomater Sci Eng,
10.1080/17452759.2019.1585555. 2:454–72.
23. Bodaghi M, Serjouei A, Zolfagharian A, et al., 2020, 34. Jiang J, Xu X, Stringer J, 2019, Optimization of Process
Reversible Energy Absorbing Meta-Sandwiches by 4D Planning for Reducing Material Waste in Extrusion Based
FDM Printing. Int J Mech Sci, 173:105451. DOI: 10.1016/j. Additive Manufacturing. Robot Comput Integr Manuf,
ijmecsci.2020.105451. 59:317–25. DOI: 10.1016/j.rcim.2019.05.007.
24. Zolfagharian A, Kouzani A, Khoo SY, et al., 2018, 3D Printed 35. Liu X, Song R, Zhang W, et al., 2017, Development of Eco-
Soft Parallel Actuator. Smart Mater Struct, 27:45019. DOI: friendly Soy Protein Isolate Films with High Mechanical
10.1088/1361-665x/aaab29. Properties Through HNTs, PVA, and PTGE Synergism
25. Zolfagharian A, Kaynak A, Kouzani A, 2019, Closed-loop Effect. Sci Rep, 7:1–9. DOI: 10.1038/srep44289.
4D-printed Soft Robots. Mater Des, 188:108411. DOI: 36. Yang R, Chen C, 1996, Stress-based Topology Optimization.
10.1016/j.matdes.2019.108411. Struct Optim, 12:98–105.
26. Jiang J, Xu X, Stringer J, 2018, Support Structures for Additive 37. Zolfagharian, A., Denk, M., Bodaghi, M, et al., 2019,
Manufacturing: A Review. J Manuf Mater Process, 2:64. Topology-optimized 4D Printing of a Soft Actuator. Acta
27. Gordelier TJ, Thies PR, Turner L, et al., 2019, Optimising the Mech Solid Sin, 1:1-13. DOI:10.1007/s10338-019-00137-z.
FDM Additive Manufacturing Process to Achieve Maximum 38. Labanda, S.R, 2015, Mathematical Programming Methods
Tensile Strength: A State-of-the-art Review. Rapid Prototyp J, for Large-scale Topology Optimization Problems. PhD
25:953-971. DOI: 10.1108/rpj-07-2018-0183. Thesis, DTU.
28. Mohamed OA, Masood SH, Bhowmik JL, 2015, Optimization 39. Bendsøe MP, 2009, Topology Optimization. Springer, Berlin.
of Fused Deposition Modeling Process Parameters: A Review 40. Price MJ, Trbovich M, 2018, Thermoregulation following
of Current Research and Future Prospects. Adv Manuf, 3:42– spinal cord injury. In: Handbook of Clinical Neurology.
53. DOI: 10.1007/s40436-014-0097-7. Elsevier, Amsterdam. pp. 799–820. DOI: 10.1016/b978-0-
29. Wong JY, 2015, On-site 3D Printing of Functional Custom 444-64074-1.00050-1.
Mallet Splints for Mars Analogue Crewmembers. Aerosp Med 41. Stevens M, 2016, Human Body Heat as a Source for
Hum Perform, 86:911–4. DOI: 10.3357/amhp.4259.2015. Thermoelectric Energy Generation, Submitted as Coursework
30. Cazon A, Kelly S, Paterson AM, et al., 2017, Analysis for PH240. Stanford University, United States.
28 International Journal of Bioprinting (2020)–Volume 6, Issue 2

