Page 30 - IJB-6-3
P. 30
Bioprinting with collagen
Rep, 9:1856. DOI: 10.1038/s41598-018-38366-w. Optimization of collagen Type I-hyaluronan hybrid bioink
28. Kim W, Kim G, 2019, Collagen/bioceramic-based composite for 3D bioprinted liver microenvironments. Biofabrication,
bioink to fabricate a porous 3D hASCs-laden structure 11:015003. DOI: 10.1088/1758-5090/aae543.
for bone tissue regeneration. Biofabrication, 12:015007. 39. Klein S, Vykoukal J, Felthaus O, et al., 2016, Collagen Type
DOI: 10.1088/1758-5090/ab436d. I conduits for the regeneration of nerve defects. Materials
29. Kim WJ, Yun HS, Kim GH, 2017, An innovative cell-laden (Basel), 9:219. DOI: 10.3390/ma9040219.
α-TCP/collagen scaffold fabricated using a two-step printing 40. Madduri S, Feldman K, Tervoort T, et al., 2010, Collagen
process for potential application in regenerating hard tissues. nerve conduits releasing the neurotrophic factors GDNF
Sci Rep, 7:3181. DOI: 10.1038/s41598-017-03455-9. and NGF. J Control Release, 143:168-74. DOI: 10.1016/j.
30. Lin KF, He S, Song Y, et al., 2016, Low-temperature jconrel.2009.12.017.
additive manufacturing of biomimic three-dimensional 41. O’Connor SM, Stenger DA, Shaffer KM, et al., 2000,
hydroxyapatite/collagen scaffolds for bone regeneration. ACS Primary neural precursor cell expansion, differentiation and
Appl Mater Interfaces, 8:6905–16. cytosolic Ca(2+) response in three-dimensional collagen
31. Marques CF, Diogo GS, Pina S, et al., 2019, Collagen- gel. J Neurosci Methods, 102:187–95. DOI: 10.1016/s0165-
based bioinks for hard tissue engineering applications: A 0270(00)00303-4.
comprehensive review. J Mater Sci Mater Med, 30:32. DOI: 42. Labour MN, Vigier S, Lerner D, et al., 2016, 3D
10.1007/s10856-019-6234-x. compartmented model to study the neurite-related toxicity
32. Mishra R, Basu B, Kumar A, 2019, Physical and of Aβ aggregates included in collagen gels of adaptable
cytocompatibility properties of bioactive glass-polyvinyl porosity. Acta Biomater, 37:38–49. DOI: 10.1016/j.
alcohol-sodium alginate biocomposite foams prepared via sol- actbio.2016.04.001.
gel processing for trabecular bone regeneration. J Mater Sci: 43. Lee W, Pinckney J, Lee V, et al., 2009, Three-dimensional
Mater Med, 20:2493–500. DOI: 10.1007/s10856-009-3814-1. bioprinting of rat embryonic neural cells. Neuroreport, 20:798–
33. Shim JH, Jang KM, Hahn SK, et al., 2016, Three-dimensional 803. https://doi.org/10.1097/wnr.0b013e32832b8be4.
bioprinting of multilayered constructs containing human 44. Lee YB, Polio S, Lee W, et al., 2010, Bio-printing of
mesenchymal stromal cells for osteochondral tissue collagen and VEGF-releasing fibrin gel scaffolds for neural
regeneration in the rabbit knee joint. Biofabrication, stem cell culture. Exp Neurol, 223:645–52. DOI: 10.1016/j.
8:014102. DOI: 10.1088/1758-5090/8/1/014102. expneurol.2010.02.014.
34. Yang X, Lu Z, Wu H, et al., 2018, Collagen-alginate as bioink 45. Chen C, Zhao ML, Zhang RK, et al., 2017, Collagen/heparin
for three-dimensional (3D) cell printing based cartilage tissue sulfate scaffolds fabricated by a 3D bioprinter improved
engineering. Mater Sci Eng C Mater Biol Appl, 83:195–201. mechanical properties and neurological function after spinal
DOI: 10.1016/j.msec.2017.09.002. cord injury in rats. J Biomed Mater Res A, 105:1324–32.
35. Cui H, Miao S, Esworthy T, et al, 2018, 3D bioprinting for DOI: 10.1002/jbm.a.36011.
cardiovascular regeneration and pharmacology. Adv Drug 46. Zhang B, Xue Q, Li J, et al., 2019, 3D bioprinting for
Del Rev, 132:252–269. artificial cornea: Challenges and perspectives. Med Eng Phys,
36. Lewis PL, Shah RN, 2016, 3D Printing for liver tissue 71:68–78.
engineering: Current approaches and future challenges. Curr 47. Isaacson A, Swioklo S, Connon CJ, 2018, 3D bioprinting of a
Transpl Rep, 3:100–108. DOI: 10.1007/s40472-016-0084-y. corneal stroma equivalent. Exp Eye Res, 173:188–193. DOI:
37. Shim JH, Kim JY, Park M, et al., 2011, Development of a 10.1016/j.exer.2018.05.010.
hybrid scaffold with synthetic biomaterials and hydrogel 48. Campos DD, Rohde M, Ross M, et al., 2019, Corneal
using solid freeform fabrication technology. Biofabrication, bioprinting utilizing collagen-based bioinks and primary
3:034102. DOI: 10.1088/1758-5082/3/3/034102. human keratocytes. J Biomed Mater Res Part A, 107:1945–
38. Mazzocchi A, Devarasetty M, Huntwork R, et al., 2018, 53. DOI: 10.1002/jbm.a.36702.
26 International Journal of Bioprinting (2020)–Volume 6, Issue 3

