Page 30 - IJB-6-3
P. 30

Bioprinting with collagen
               Rep, 9:1856. DOI: 10.1038/s41598-018-38366-w.       Optimization  of  collagen  Type  I-hyaluronan  hybrid  bioink
           28.  Kim W, Kim G, 2019, Collagen/bioceramic-based composite   for 3D bioprinted liver microenvironments. Biofabrication,
               bioink  to  fabricate  a  porous 3D hASCs-laden  structure   11:015003. DOI: 10.1088/1758-5090/aae543.
               for bone tissue regeneration.  Biofabrication, 12:015007.   39.  Klein S, Vykoukal J, Felthaus O, et al., 2016, Collagen Type
               DOI: 10.1088/1758-5090/ab436d.                      I conduits for the  regeneration  of nerve  defects.  Materials
           29.  Kim WJ, Yun HS, Kim GH, 2017, An innovative cell-laden   (Basel), 9:219. DOI: 10.3390/ma9040219.
               α-TCP/collagen scaffold fabricated using a two-step printing   40.  Madduri  S, Feldman  K, Tervoort T,  et  al.,  2010,  Collagen
               process for potential application in regenerating hard tissues.   nerve conduits releasing  the neurotrophic  factors GDNF
               Sci Rep, 7:3181. DOI: 10.1038/s41598-017-03455-9.   and  NGF.  J  Control  Release, 143:168-74.  DOI: 10.1016/j.
           30.  Lin  KF,  He  S, Song  Y,  et  al.,  2016,  Low-temperature   jconrel.2009.12.017.
               additive  manufacturing  of biomimic  three-dimensional   41.  O’Connor SM, Stenger DA,  Shaffer KM,  et al., 2000,
               hydroxyapatite/collagen scaffolds for bone regeneration. ACS   Primary neural precursor cell expansion, differentiation and
               Appl Mater Interfaces, 8:6905–16.                   cytosolic  Ca(2+) response in three-dimensional  collagen
           31.  Marques CF, Diogo GS, Pina  S,  et  al., 2019, Collagen-  gel. J Neurosci Methods, 102:187–95. DOI: 10.1016/s0165-
               based bioinks for hard tissue engineering applications:  A   0270(00)00303-4.
               comprehensive review. J Mater Sci Mater Med, 30:32. DOI:   42.  Labour  MN,  Vigier  S,  Lerner  D,  et  al., 2016, 3D
               10.1007/s10856-019-6234-x.                          compartmented  model to study the neurite-related  toxicity
           32.  Mishra R, Basu B, Kumar  A, 2019, Physical and     of  Aβ  aggregates  included  in  collagen  gels  of  adaptable
               cytocompatibility properties of bioactive glass-polyvinyl   porosity.  Acta Biomater, 37:38–49. DOI: 10.1016/j.
               alcohol-sodium alginate biocomposite foams prepared via sol-  actbio.2016.04.001.
               gel processing for trabecular bone regeneration. J Mater Sci:   43.  Lee W, Pinckney J, Lee V, et al., 2009, Three-dimensional
               Mater Med, 20:2493–500. DOI: 10.1007/s10856-009-3814-1.  bioprinting of rat embryonic neural cells. Neuroreport, 20:798–
           33.  Shim JH, Jang KM, Hahn SK, et al., 2016, Three-dimensional   803. https://doi.org/10.1097/wnr.0b013e32832b8be4.
               bioprinting  of  multilayered  constructs  containing  human   44.  Lee  YB, Polio S, Lee  W,  et al., 2010, Bio-printing of
               mesenchymal  stromal  cells  for  osteochondral  tissue   collagen and VEGF-releasing fibrin gel scaffolds for neural
               regeneration  in the rabbit knee joint.  Biofabrication,   stem cell culture. Exp Neurol, 223:645–52. DOI: 10.1016/j.
               8:014102. DOI: 10.1088/1758-5090/8/1/014102.        expneurol.2010.02.014.
           34.  Yang X, Lu Z, Wu H, et al., 2018, Collagen-alginate as bioink   45.  Chen C, Zhao ML, Zhang RK, et al., 2017, Collagen/heparin
               for three-dimensional (3D) cell printing based cartilage tissue   sulfate scaffolds fabricated  by a 3D bioprinter improved
               engineering. Mater Sci Eng C Mater Biol Appl, 83:195–201.   mechanical properties and neurological function after spinal
               DOI: 10.1016/j.msec.2017.09.002.                    cord injury in rats.  J Biomed Mater Res  A,  105:1324–32.
           35.  Cui H, Miao S, Esworthy T, et al, 2018, 3D bioprinting for   DOI: 10.1002/jbm.a.36011.
               cardiovascular  regeneration  and pharmacology.  Adv  Drug   46.  Zhang  B,  Xue  Q, Li  J,  et  al.,  2019,  3D bioprinting  for
               Del Rev, 132:252–269.                               artificial cornea: Challenges and perspectives. Med Eng Phys,
           36.  Lewis PL, Shah RN, 2016, 3D Printing  for liver  tissue   71:68–78.
               engineering: Current approaches and future challenges. Curr   47.  Isaacson A, Swioklo S, Connon CJ, 2018, 3D bioprinting of a
               Transpl Rep, 3:100–108. DOI: 10.1007/s40472-016-0084-y.  corneal stroma equivalent. Exp Eye Res, 173:188–193. DOI:
           37.  Shim JH, Kim JY, Park M, et al., 2011, Development of a   10.1016/j.exer.2018.05.010.
               hybrid scaffold with synthetic  biomaterials  and hydrogel   48.  Campos DD,  Rohde  M, Ross M,  et  al.,  2019,  Corneal
               using solid freeform fabrication technology. Biofabrication,   bioprinting  utilizing  collagen-based  bioinks  and  primary
               3:034102. DOI: 10.1088/1758-5082/3/3/034102.        human keratocytes. J Biomed Mater Res Part A, 107:1945–
           38.  Mazzocchi  A,  Devarasetty  M,  Huntwork  R,  et al., 2018,   53. DOI: 10.1002/jbm.a.36702.










           26                          International Journal of Bioprinting (2020)–Volume 6, Issue 3
   25   26   27   28   29   30   31   32   33   34   35