Page 29 - IJB-6-3
P. 29
Osidak, et al.
533. DOI: 10.1016/j.biotechadv.2018.02.004. e00059.
3. Hospodiuk M, Dey M, Sosnoski D, et al., 2017, The bioink: A 15. Lee A, Hudson AR, Shiwarski DJ, et al., 2019, 3D bioprinting
comprehensive review on bioprintable materials. Biotechnol of collagen to rebuild components of the human heart.
Adv, 35:217-239. DOI: 10.1016/j.biotechadv.2016.12.006. Science, 365:482–87. DOI: 10.1126/science.aav9051.
4. Kloxin AM, Kloxin CJ, Bowman CN, et al., 2010, 16. Diamantides N, Wang L, Pruiksma T, et al., 2017, Correlating
Mechanical properties of cellularly responsive hydrogels and rheological properties and printability of collagen bioinks:
their experimental determination. Adv Mater, 22:3484–94. The effects of riboflavin photocrosslinking and pH.
DOI: 10.1002/adma.200904179. Biofabrication, 9:034102. DOI: 10.1088/1758-5090/aa780f.
5. Antoine EE, Vlachos PP, Rylander MN, 2014, Review 17. Osidak EO, Karalkin PA, Osidak MS, et al., 2019, Viscoll
of collagen I hydrogels for bioengineered tissue collagen solution as a novel bioink for direct 3D bioprinting.
microenvironments: Characterization of mechanics, J Mater Sci Mater Med, 30:31. DOI: 10.1007/s10856-019-
structure, and transport. Tissue Eng Part B Rev, 20:683–96. 6233-y.
DOI: 10.1089/ten.teb.2014.0086. 18. Lian D, Jiheng L, Conghu L, et al., 2013, Effects of NaCl
6. Lynn AK, Yannas IV, Bonfield W, 2004, Antigenicity and on the rheological behavior of collagen solution, Korea-Aust
immunogenicity of collagen. J Biomed Mater Res B App Rheol J, 25:137–144. DOI: 10.1007/s13367-013-0014-9.
Biomater, 71:343–54. DOI: 10.1002/jbm.b.30096. 19. Lai G, Li Y, Li G, 2008, Effect of concentration and
7. Parenteau-Bareil R, Gauvin R, Berthod F, 2010, Collagen- temperature on the rheological behavior of collagen solution.
based biomaterials for tissue engineering applications. Int J Biol Macromol, 42:285–91.
Materials (Basel), 3:1863–87. DOI: 10.3390/ma3031863. 20. Rhee S, Putzer JL, Mason BN, et al., 2016, 3D Bioprinting
8. Sriya Y, Shibu C, Ashis KB, et al., 2019, Tissue-Specific of spatially heterogeneous collagen constructs for cartilage
Bioink from Xenogeneic Sources for 3D Bioprinting of Tissue tissue engineering. ACS Biomater Sci Eng, 2:1800–1805.
Constructs, in Xenotransplantation-comprehensive Study, DOI: 10.1021/acsbiomaterials.6b00288.
Shuji Miyagawa, IntechOpen, Available from: https://www. 21. Lee H, Yang GH, Kim M, et al., 2018, Fabrication of micro/
intechopen.com/books/xenotransplantation-comprehensive- nanoporous collagen/dECM/silk-fibroin biocomposite
study/tissue-specific-bioink-from-xenogeneic-sources- scaffolds using a low temperature 3D printing process for
for-3d-bioprinting-of-tissue-constructs. DOI: 10.5772/ bone tissue regeneration. Mater Sci Eng C Mater Biol Appl,
intechopen.89695. 84:140-147. DOI: 10.1016/j.msec.2017.11.013.
9. Gelse K, Pöschl E, Aigner T, 2003, Collagens--structure, 22. Moncal KK, Ozbolat V, Datta P, et al., 2019, Thermally-
function, and biosynthesis. Adv Drug Deliv Rev, 55:1531–46. controlled extrusion-based bioprinting of collagen. J Mater
DOI: 10.1016/j.addr.2003.08.002. Sci: Mater Med, 30:55. DOI: 10.1007/s10856-019-6258-2.
10. Ricard-Blum S, 2011, The collagen family. Cold Spring 23. Koch L, Deiwick A, Schlie S, et al., 2012, Skin tissue
Harb Perspect Biol, 3:a004978. DOI: 10.1101/cshperspect. generation by laser cell printing. Biotechnol Bioeng,
a004978. 109:1855–63.
11. Włodarczyk-Biegun MK, Del Campo A, 2017, 3D 24. Michael S, Sorg H, Peck CT, et al., 2013, Tissue engineered
bioprinting of structural proteins. Biomaterials, 134:180– skin substitutes created by laser-assisted bioprinting form
201. DOI: 10.1016/j.biomaterials.2017.04.019. skin-like structures in the dorsal skin fold chamber in mice.
12. Yoon H, Lee JS, Yim H, et al., 2016, Development of cell- PLoS One, 8:e57741. DOI: 10.1371/journal.pone.0057741.
laden 3D scaffolds for efficient engineered skin substitutes 25. Shi Y, Xing TL, Zhang HB, et al., 2018, Tyrosinase-doped
by collagen gelation. RSC Adv, 6:21439–47. DOI: 10.1039/ bioink for 3D bioprinting of living skin constructs. Biomed
c5ra19532b. Mater, 13:035008. DOI: 10.1088/1748-605x/aaa5b6.
13. Hinton TJ, Jallerat Q, Palchesko RN, et al., 2015, Three- 26. Skardal A, Mack D, Kapetanovic E, et al., 2012, Bioprinted
dimensional printing of complex biological structures by amniotic fluid-derived stem cells accelerate healing of large
freeform reversible embedding of suspended hydrogels. Sci skin wounds. Stem Cells Transl Med, 11:792–802. DOI:
Adv, 1:e1500758. DOI: 10.1126/sciadv.1500758. 10.5966/sctm.2012-0088.
14. Maxson EL, Young MD, Noble C, et al., 2019, In vivo 27. Albanna M, Binder KW, Murphy SV, et al., 2019, In Situ
remodeling of a 3D-bioprinted tissue engineered heart valve bioprinting of autologous skin cells accelerates wound
scaffold. Bioprinting, 16:e00059. DOI: 10.1016/j.bprint.2019. healing of extensive excisional full-thickness wounds. Sci
International Journal of Bioprinting (2020)–Volume 6, Issue 3 25

