Page 538 - IJB-10-6
P. 538

International Journal of Bioprinting                             Bacteriorhodopsin-embedded hydrogel device




               network photoanode with bacteriorhodopsin. Int J Hydrogen   of  natural  dye  sensitized  solar  cells.  J Alloys Compoun.
               Energy. 2020;45(1):103-111.                        2013;581:186-191.
               doi: 10.1016/j.ijhydene.2019.10.184                doi: 10.1016/j.jallcom.2013.07.039
            29.  Wu M, Lin F, Song Y. Engineered bacteriorhodopsin   40.  Yen CW, Hayden SC, Dreaden EC, Szymanski P, El-Sayed
               film with oriented patterns for the improvement of the   MA. Tailoring plasmonic and electrostatic field effects to
               photoelectric response. Int J Mol Sci. 2022;23(24):16079.   maximize solar energy conversion by bacteriorhodopsin,
               doi: 10.3390/ijms232416079                         the other natural photosynthetic system.  Nano Lett.
                                                                  2011;11(9):3821-3826.
            30.  Molaeirad A, Rezaeian N. Oriented assembly of
               bacteriorhodopsin  on ZnO nanostructured  electrode      doi: 10.1021/nl2018959
               for  enhanced  photocurrent  generation.  Biotechnol Appl   41.  Thavasi V, Lazarova T, Filipek S, et al. Study on the feasibility
               Biochem. 2015;62(4):489-493.                       of bacteriorhodopsin as bio-photosensitizer in excitonic
               doi: 10.1002/bab.1294                              solar  cell:  a first  report.  J Nanosci Nanotech.  2009;9(3):
                                                                  1679-1687.
            31.  Renugopalakrishnan V, Barbiellini B, King C, et al.
               Engineering a robust photovoltaic device with quantum      doi: 10.1166/jnn.2009.si07
               dots and bacteriorhodopsin.  J Phys Chem C Nanomater   42.  Li R, Hu F, Bao Q, et al. Enhancement of photoelectric
               Interfaces. 2014;118(30):16710-16717.              response of bacteriorhodopsin by multilayered WO3·H2O
               doi: 10.1021/jp502885s                             nanocrystals/PVA  membrane.  Chem   Commun.
                                                                  2010;46(5):689-691.
            32.  Lu S, Guo Z, Xiang Y, Jiang L. Photoelectric frequency
               response  in  a   bioinspired  bacteriorhodopsin/     doi: 10.1039/b923354g
               alumina nanochannel hybrid nanosystem.  Adv  Mater.   43.  Zabut B, Elkahlout K, Yücel M, Gunduz U, Turker L,
               2016;28(44):9851-9856.                             Eroglu I. Hydrogen gas production by combined systems
               doi: 10.1002/adma.201603809                        of  Rhodobacter sphaeroides O.U.001 and  Halobacterium
                                                                  salinarum in a photobioreactor.  Int J Hydrogen Energy.
            33.  Chellamuthu J, Nagaraj P, Chidambaram SG, Sambandam
               A, Muthupandian A. Enhanced photocurrent generation in   2006;31:1553-1562.
               bacteriorhodopsin based bio-sensitized solar cells using gel      doi: 10.1016/j.ijhydene.2006.06.023
               electrolyte. J Photochem Photobiol B. 2016;162:208-212.   44.  Chen F, Qing Y, Wu H, Hou X. Optical storage characters of
               doi: 10.1016/j.jphotobiol.2016.06.044              bacteriorhodopsin molecule film. Proc SPIE. 2002;4536.
                                                                  doi: 10.1117/12.409233
            34.  Naseri N, Janfaza S, Irani R. Visible light switchable
               bR/TiO2   nanostructured  photoanodes  for  bio-  45.  Yu X, Yao B, Lei M, Gao P, Ma B. Femtosecond laser-
               inspired solar energy conversion.  RSC Adv. 2015;5(24):   induced permanent anisotropy in bacteriorhodopsin films
               18642-18646.                                       and applications in optical data storage.  J Modern Optic.
               doi: 10.1039/C4RA16188B                            2013;60(4):309-314.
                                                                  doi: 10.1080/09500340.2013.774067
            35.  Molaeirad A, Janfaza S, Karimi-Fard A, Mahyad B.
               Photocurrent generation by adsorption of two main pigments   46.  Yao B, Lei M, Ren L, et al. Polarization multiplexed write-
               of  Halobacterium salinarum on TiO2 nanostructured   once–read-many optical data storage in bacteriorhodopsin
               electrode. Biotechnol Appl Biochem. 2015;62(1):121-125.   films. Opt Lett. 2005;30(22):3060-3062.
               doi: 10.1002/bab.1244                              doi: 10.1364/ol.30.003060
            36.  Mohammadpour R, Janfaza S. Efficient nanostructured   47.  Chen F, Hou X, Li BF, Jiang L, Hammp N. Optical
               biophotovoltaic cell based on bacteriorhodopsin as   information  storage  of  bacteriorhodopsin  molecule  film:
               biophotosensitizer. ACS Sustain Chem Eng. 2015;3(5):809-  experimental study. Mater Sci Eng B. 2000;76(1):76-78.
               813.                                               doi: 10.1016/S0921-5107(00)00399-8
               doi: 10.1021/sc500617w
                                                               48.  Hampp NA, Neebe M, Seitz A. Printing inks containing
            37.  Guo Z, Liang D, Rao S, Xiang Y. Heterogeneous    the photochromic protein bacteriorhodopsin. In:  Optical
               bacteriorhodopsin/gold nanoparticle stacks as a photovoltaic   Security and Counterfeit Deterrence Techniques III. SPIE,
               system. Nano Energy. 2015;11:654-661.              2000;3973:118-125.
               doi: 10.1016/j.nanoen.2014.11.026                  doi: 10.1117/12.382181
            38.  Hug H, Bader M, Mair P, Glatzel T. Biophotovoltaics:   49.  Hampp N, Neebe M. Bacteriorhodopsin-based multilevel
               natural pigments in dye-sensitized solar cells. Appl Energy.   optical security features. In: Optical Security and Counterfeit
               2014;115:216-225.                                  Deterrence Techniques VI. SPIE, 2006;6075:256-264.
               doi: 10.1016/j.apenergy.2013.10.055                doi: 10.1117/12.642627
            39.  Kumara NTRN, Ekanayake P, Lim A, et al. Layered co-  50.  Ostrovsky MA, Smitienko OA, Bochenkova AV, Feldman
               sensitization for enhancement of conversion efficiency   TB. Similarities and differences in photochemistry of Type


            Volume 10 Issue 6 (2024)                       530                                doi: 10.36922/ijb.4454
   533   534   535   536   537   538   539   540   541   542   543