Page 539 - IJB-10-6
P. 539
International Journal of Bioprinting Bacteriorhodopsin-embedded hydrogel device
I and Type II rhodopsins. Biochem Moscow. 2023;88(10): doi: 10.1016/j.biomaterials.2018.05.014
1528-1543. 59. Ma Y, Zhang Y, Cai S, et al. Flexible hybrid electronics for
doi: 10.1134/S0006297923100097
digital healthcare. Adv Mater. 2020;32(15):1902062.
51. Sabari Girisun TC, Jeganathan C, Pavithra N, Anandan S. doi: 10.1002/adma.201902062
Structurally modified bacteriorhodopsin as an efficient 60. Wang L, Xu T, Zhang X. Multifunctional conductive
bio-sensitizer for solar cell applications. Eur Biophys J. hydrogel-based flexible wearable sensors. TrAC Trends Anal
2019;48(1):61-71. Chem. 2021;134:116130.
doi: 10.1007/s00249-018-1331-1 doi: 10.1016/j.trac.2020.116130
52. Janfaza S, Molaeirad A, Mohamadpour R, Khayati M, 61. Ling Y, An T, Yap LW, Zhu B, Gong S, Cheng W. Disruptive,
Mehrvand J. Efficient bio-nano hybrid solar cells via purple soft, wearable sensors. Adv Mater. 2020;32(18):1904664.
membrane as sensitizer. BioNanoSci. 2014;4(1):71-77. doi: 10.1002/adma.201904664
doi: 10.1007/s12668-013-0118-1
62. Han F, Xie X, Wang T, et al. Wearable hydrogel‐based
53. Das S, Wu C, Song Z, et al. Bacteriorhodopsin enhances epidermal sensor with thermal compatibility and long term
efficiency of perovskite solar cells. ACS Appl Mater Interfaces. stability for smart colorimetric multi‐signals monitoring.
2019;11(34):30728-30734. Adv Healthc Mater. 2023;12(3):2201730.
doi: 10.1021/acsami.9b06372 doi: 10.1002/adhm.202201730
54. Jeganathan C, Sabari Girisun TC, Vijaya S, Anandan S. 63. Persaud A, Maus A, Strait L, Zhu D. 3D bioprinting with live
Bacteriorhodopsin-sensitized preferentially oriented cells. Eng Regen. 2022;3(3):292-309.
one-dimensional TiO2 nanorod polymorphs as efficient doi: 10.1016/j.engreg.2022.07.002
photoanodes for high-performance bio-sensitized solar 64. Dey M, Ozbolat IT. 3D bioprinting of cells, tissues and
cells. Appl Nanosci. 2019;9(2):189-208. organs. Sci Rep. 2020;10(1):14023.
doi: 10.1007/s13204-018-0905-7
doi: 10.1038/s41598-020-70086-y
55. Yao B, Wang Y, Lei M, Zheng Y. Characteristics and 65. Gai K, Yang M, Chen W, et al. Development of neural cells
mechanisms of the two types of photoelectric differential and spontaneous neural activities in engineered brain-
response of bacteriorhodopsin-based photocell. Biosens like constructs for transplantation. Adv Healthc Mater.
Bioelectron. 2003;19(4):283-287. 2024;2401419.
doi: 10.1016/S0956-5663(03)00211-2 doi: 10.1002/adhm.202401419
56. Wang Y, Wu J, Ma D, Ding J. Preparation of a cross-linked 66. Lien SM, Ko LY, Huang TJ. Effect of crosslinking
gelatin/bacteriorhodopsin film and its photochromic temperature on compression strength of gelatin scaffold
properties. Sci China Chem. 2011;54(2):405-409. for articular cartilage tissue engineering. Mater Sci Eng C.
doi: 10.1007/s11426-010-4213-7 2010;30(4):631-635.
57. Ma D, Zhao Y, Wu J, Cui T, Ding J. A block-copolymer doi: 10.1016/j.msec.2010.02.019
hydrogel encapsulates bacteriorhodopsin and produces 67. Chu LK, Yen CW, El-Sayed MA. Bacteriorhodopsin-
the longest photochromic response of the membrane based photo-electrochemical cell. Biosens Bioelectron.
protein under high water content conditions. Soft Matter. 2010;26(2):620-626.
2009;5(23):4635-4637. doi: 10.1016/j.bios.2010.07.01
doi: 10.1039/b917438a
68. Liu W, Liu F, Zhang T. An optoelectronic device based on
58. Hsieh FY, Han HW, Chen XR, Yang CS, Wei Y, Hsu SH. bacteriorhodopsin with modulated photocurrent waveform.
Non-viral delivery of an optogenetic tool into cells with self- Opt Mater. 2022;133:112937.
healing hydrogel. Biomaterials. 2018;174:31-40. doi: 10.1016/j.optmat.2022.112937
Volume 10 Issue 6 (2024) 531 doi: 10.36922/ijb.4454

