Page 111 - IJB-7-3
P. 111

Chen, et al.
               Freezing Capabilities. Adv Funct Mater, 31:2011176.  with  Local  Adaptability  and  Bioactivity  for  Enhanced
               http://dx.doi.org/10.1002/adfm.2020111766           Osteogenesis. Adv Healthc Mater, 9:e1901469.
           7.   Zhou Y, Wan  C, Yang Y,  et  al., 2019, Highly  Stretchable,   http://dx.doi.org/10.1002/adhm.20190146916
               Elastic,  and  Ionic  Conductive  Hydrogel  for Artificial  Soft   17.  Wang H, Hansen MB, Lowik DW, et al., 2011, Oppositely
               Electronics. Adv Funct Mater, 29:1806220.           Charged Gelatin Nanospheres as Building Blocks for
               http://dx.doi.org/10.1002/adfm.2018062207           Injectable and  Biodegradable  Gels.  Adv  Mater, 23:H119–
           8.   Chen K, Lin Q, Wang L, et al., 2021, An All-in-One Tannic   H124.
               Acid-Containing Hydrogel Adhesive with High Toughness,   http://dx.doi.org/10.1002/adma.20100390817
               Notch Insensitivity, Self-Healability, Tailorable Topography,   18.  Wang H, Boerman  OC, Sariibrahimoglu  K,  et al., 2012,
               and Strong, Instant, and On-Demand Underwater Adhesion.   Comparison of Micro- vs. Nanostructured Colloidal Gelatin
               ACS Appl Mater Interfaces, 13:9748–61.              Gels for Sustained Delivery  of Osteogenic  Proteins: Bone
               http://dx.doi.org/10.1021/acsami.1c006378           Morphogenetic  Protein-2 and  Alkaline  Phosphatase.
           9.   Lei Z,  Wu P, 2019,  A Highly  Transparent and Ultra-  Biomaterials, 33:8695–703.
               stretchable Conductor with Stable Conductivity during Large   http://dx.doi.org/10.1016/j.biomaterials.2012.08.02418.
               Deformation. Nat Commun, 10:3429.               19.  Du M, Liu P,  Wong JE,  et al., 2020, Colloidal  Forces,
               http://dx.doi.org/10.1038/s41467-019-11364-w9       Microstructure and Thixotropy of Sodium Montmorillonite
           10.  Lei Z, Wang Q, Sun S, et al., 2017, A Bioinspired Mineral   (SWy-2) Gels: Roles of Electrostatic and van der  Waals
               Hydrogel as a Self-Healable, Mechanically Adaptable Ionic   Forces. Appl Clay Sci, 195:105710.
               Skin  for  Highly  Sensitive  Pressure  Sensing.  Adv  Mater,   http://dx.doi.org/10.1016/j.clay.2020.10571019
               29:22.                                          20.  Komarov KA,  Yurchenko SO,  2020, Colloids in rotating
               http://dx.doi.org/10.1002/adma.20170032110
           11.  Lei Z, Huang J, Wu P, 2019, Traditional Dough in the Era of   electric and magnetic fields: Designing tunable interactions
                                                                   with spatial field hodographs. Soft Matter, 16:8155–68.
               Internet of Things: Edible, Renewable, and Reconfigurable   http://dx.doi.org/10.1039/d0sm01046d20
               Skin‐Like Iontronics. Adv Funct Mater, 30:1908028.
               http://dx.doi.org/10.1002/adfm.20190801811      21.  Ruter  A, Kuczera  S, Gentile  L,  et  al.,  2020, Arrested
           12.  Sun JY, Zhao X, Illeperuma  WR,  et al., 2012, Highly   Dynamics in a Model Peptide Hydrogel System. Soft Matter,
               Stretchable and tough Hydrogels. Nature, 489:133–6.  16:2642–51.
               http://dx.doi.org/10.1038/nature1140912             http://dx.doi.org/10.1039/c9sm02244a21
           13.  Gong JP, Katsuyama Y, Kurokawa T, et al., 2003, Double-  22.  Diba M, Wang H, Kodger TE, et al., 2017, Highly Elastic and
               Network Hydrogels with Extremely  High Mechanical   Self-Healing Composite Colloidal Gels. Adv Mater, 29:11.
               Strength. Adv Mater, 15:1155–8.                     http://dx.doi.org/10.1002/adma.2016046721
               http://dx.doi.org/10.1002/adma.20030490713      23.  Huang H, Han L, Li J, et al., 2020, Super-stretchable, Elastic
           14.  Gong JP, 2010,  Why are Double Network Hydrogels so   and Recoverable  Ionic Conductive Hydrogel for  Wireless
               Tough? Soft Matter, 6:2583–90.                      Wearable, Stretchable Sensor. J Mater Chem A, 8:10291–300.
               http://dx.doi.org/10.1039/b924290b1.                http://dx.doi.org/10.1039/d0ta02902e22
           15.  Chen K, Feng Y, Zhang Y, et al., 2019, Entanglement-Driven   24.  Pan  Z,  Yang  J, Li  L,  et  al.,  2020,  All-in-one  Stretchable
               Adhesion, Self-Healing, and High Stretchability of Double-  Coaxial-fiber Strain Sensor Integrated with High-performing
               Network PEG-Based Hydrogels. ACS Appl Mater Interfaces,   Supercapacitor. Energy Storage Mater, 25:124–30.
               11:36458–68.                                        http://dx.doi.org/10.1016/j.ensm.2019.10.02323
               http://dx.doi.org/10.1021/acsami.9b1434815      25.  Haraguchi K, 2007, Nanocomposite Hydrogels. Curr Opin
           16.  Mu Z, Chen K, Yuan S, et al., 2020, Gelatin Nanoparticle-  Solid State Mater Sci, 11:47–54.
               Injectable Platelet-Rich Fibrin Double Network Hydrogels   http://dx.doi.org/10.1016/j.cossms.2008.05.0013










                                       International Journal of Bioprinting (2021)–Volume 7, Issue 3       107
   106   107   108   109   110   111   112   113   114   115   116