Page 111 - IJB-7-3
P. 111
Chen, et al.
Freezing Capabilities. Adv Funct Mater, 31:2011176. with Local Adaptability and Bioactivity for Enhanced
http://dx.doi.org/10.1002/adfm.2020111766 Osteogenesis. Adv Healthc Mater, 9:e1901469.
7. Zhou Y, Wan C, Yang Y, et al., 2019, Highly Stretchable, http://dx.doi.org/10.1002/adhm.20190146916
Elastic, and Ionic Conductive Hydrogel for Artificial Soft 17. Wang H, Hansen MB, Lowik DW, et al., 2011, Oppositely
Electronics. Adv Funct Mater, 29:1806220. Charged Gelatin Nanospheres as Building Blocks for
http://dx.doi.org/10.1002/adfm.2018062207 Injectable and Biodegradable Gels. Adv Mater, 23:H119–
8. Chen K, Lin Q, Wang L, et al., 2021, An All-in-One Tannic H124.
Acid-Containing Hydrogel Adhesive with High Toughness, http://dx.doi.org/10.1002/adma.20100390817
Notch Insensitivity, Self-Healability, Tailorable Topography, 18. Wang H, Boerman OC, Sariibrahimoglu K, et al., 2012,
and Strong, Instant, and On-Demand Underwater Adhesion. Comparison of Micro- vs. Nanostructured Colloidal Gelatin
ACS Appl Mater Interfaces, 13:9748–61. Gels for Sustained Delivery of Osteogenic Proteins: Bone
http://dx.doi.org/10.1021/acsami.1c006378 Morphogenetic Protein-2 and Alkaline Phosphatase.
9. Lei Z, Wu P, 2019, A Highly Transparent and Ultra- Biomaterials, 33:8695–703.
stretchable Conductor with Stable Conductivity during Large http://dx.doi.org/10.1016/j.biomaterials.2012.08.02418.
Deformation. Nat Commun, 10:3429. 19. Du M, Liu P, Wong JE, et al., 2020, Colloidal Forces,
http://dx.doi.org/10.1038/s41467-019-11364-w9 Microstructure and Thixotropy of Sodium Montmorillonite
10. Lei Z, Wang Q, Sun S, et al., 2017, A Bioinspired Mineral (SWy-2) Gels: Roles of Electrostatic and van der Waals
Hydrogel as a Self-Healable, Mechanically Adaptable Ionic Forces. Appl Clay Sci, 195:105710.
Skin for Highly Sensitive Pressure Sensing. Adv Mater, http://dx.doi.org/10.1016/j.clay.2020.10571019
29:22. 20. Komarov KA, Yurchenko SO, 2020, Colloids in rotating
http://dx.doi.org/10.1002/adma.20170032110
11. Lei Z, Huang J, Wu P, 2019, Traditional Dough in the Era of electric and magnetic fields: Designing tunable interactions
with spatial field hodographs. Soft Matter, 16:8155–68.
Internet of Things: Edible, Renewable, and Reconfigurable http://dx.doi.org/10.1039/d0sm01046d20
Skin‐Like Iontronics. Adv Funct Mater, 30:1908028.
http://dx.doi.org/10.1002/adfm.20190801811 21. Ruter A, Kuczera S, Gentile L, et al., 2020, Arrested
12. Sun JY, Zhao X, Illeperuma WR, et al., 2012, Highly Dynamics in a Model Peptide Hydrogel System. Soft Matter,
Stretchable and tough Hydrogels. Nature, 489:133–6. 16:2642–51.
http://dx.doi.org/10.1038/nature1140912 http://dx.doi.org/10.1039/c9sm02244a21
13. Gong JP, Katsuyama Y, Kurokawa T, et al., 2003, Double- 22. Diba M, Wang H, Kodger TE, et al., 2017, Highly Elastic and
Network Hydrogels with Extremely High Mechanical Self-Healing Composite Colloidal Gels. Adv Mater, 29:11.
Strength. Adv Mater, 15:1155–8. http://dx.doi.org/10.1002/adma.2016046721
http://dx.doi.org/10.1002/adma.20030490713 23. Huang H, Han L, Li J, et al., 2020, Super-stretchable, Elastic
14. Gong JP, 2010, Why are Double Network Hydrogels so and Recoverable Ionic Conductive Hydrogel for Wireless
Tough? Soft Matter, 6:2583–90. Wearable, Stretchable Sensor. J Mater Chem A, 8:10291–300.
http://dx.doi.org/10.1039/b924290b1. http://dx.doi.org/10.1039/d0ta02902e22
15. Chen K, Feng Y, Zhang Y, et al., 2019, Entanglement-Driven 24. Pan Z, Yang J, Li L, et al., 2020, All-in-one Stretchable
Adhesion, Self-Healing, and High Stretchability of Double- Coaxial-fiber Strain Sensor Integrated with High-performing
Network PEG-Based Hydrogels. ACS Appl Mater Interfaces, Supercapacitor. Energy Storage Mater, 25:124–30.
11:36458–68. http://dx.doi.org/10.1016/j.ensm.2019.10.02323
http://dx.doi.org/10.1021/acsami.9b1434815 25. Haraguchi K, 2007, Nanocomposite Hydrogels. Curr Opin
16. Mu Z, Chen K, Yuan S, et al., 2020, Gelatin Nanoparticle- Solid State Mater Sci, 11:47–54.
Injectable Platelet-Rich Fibrin Double Network Hydrogels http://dx.doi.org/10.1016/j.cossms.2008.05.0013
International Journal of Bioprinting (2021)–Volume 7, Issue 3 107

