Page 165 - IJB-7-3
P. 165
Al-Tamimi
Med, 366:848–55. United Kingdom.
https://doi.org/10.1056/nejmhle1113918 https://doi.org/10.3403/00189873u
3. Green M, Wishart N, Young E, 2016, NJR 14 Annual Report. 16. Sigmund O, Petersson J, 1998, Numerical Instabilities in
th
National Joint Registry, England. Topology Optimization: A Survey on Procedures Dealing
4. Alsop H, 2013, An introduction to fractures’ in porter. In: with Checkerboards, Mesh-dependencies and Local Minima.
Tidy’s Physiotherapy. 15 ed., Ch. 22. Churchill Livingstone, Struct Optim, 16:68–75.
th
United Kingdom. https://doi.org/10.1007/bf01214002
5. Uhthoff HK, Poitras P, Backman DS, 2006, Internal 17. ASTM Standard, 2017, Standard Test Method for Flexural
Plate Fixation of Fractures: Short History and Recent Properties of Unreinforced and Reinforced Plastics and
Developments. J Orthop Sci, 11:118–26. Electrical Insulating Materials by Four-point Bending, ASTM
https://doi.org/10.1007/s00776-005-0984-7 Standard, United States, pD6272–17.
6. Szypryt P, Forward D, 2009, The Use and Abuse of Locking https://doi.org/10.1520/d6272-02r08e01
Plates. Orthop Trauma, 23:281–90. 18. Buhl T, Pedersen C, Sigmund O, 2000, Stiffness Design
https://doi.org/10.1016/j.mporth.2009.07.002 of Geometrically Nonlinear Structures Using Topology
7. Elias CN, Lima JHC, Valiev R, et al., 2008, Biomedical Optimization. Struct Multidisc Optim, 19:93–104.
Applications of Titanium and its Alloys. JOM, 60:46–9. https://doi.org/10.1007/s001580050089
https://doi.org/10.1007/s11837-008-0031-1 19. Iqbal T, Wang L, Li D, et al., 2019, A General Multi-
8. McNamara L, 2011, Bone as a Material in Ducheyne. In: objective Topology Optimization Methodology Developed
Comprehensive Biomaterials, Elsevier, Oxford. for Customized Design of Pelvic Prostheses. Med Eng Phys,
9. Prasad K, Bazaka O, Chua M, et al., 2017, Metallic 69:8–16.
Biomaterials: Current Challenges and Opportunities. https://doi.org/10.1016/j.medengphy.2019.06.008
Materials, 10:884. 20. Saravana KG, George S, 2017, Optimization of Custom
https://doi.org/10.3390/ma10080884 Cementless Stem Using Finite Element Analysis and Elastic
10. Mahmoud D, Elbestawi MA, 2017, Lattice Structures and Modulus Distribution for Reducing Stress-shielding Effect.
Functionally Graded Materials Applications in Additive Proc Inst Mech Eng H, 231:149–59.
Manufacturing of Orthopedic Implants: A Review. J Manufact https://doi.org/10.1177/0954411916686125
Mater Proc, 1:13. 21. Chuah HG, Rahim IA, Yusof MI, 2010, Topology
https://doi.org/10.3390/jmmp1020013 Optimisation of Spinal Interbody Cage for Reducing Stress
11. Pałka K, Pokrowiecki R, 2018, Porous Titanium Implants: Shielding Effect. Comput Methods Biomech Biomed Eng,
A Review. Adv Eng Mater, 20:1700648. 13:319–26.
https://doi.org/10.1002/adem.201700648 https://doi.org/10.1080/10255840903208189
12. Al-Tamimi A, Fernandes PRA, Peach C, et al., 2017, Metallic 22. Woo S, Simon B, Akeson W, et al., 1977, An Interdisciplinary
Bone Fixation Implants: A Novel Design Approach for Approach to Evaluate the Effect of Internal Fixation Plate on
Reducing the Stress Shielding Phenomenon. Virtual Phys Long Bone Remodeling. J Biomech, 10:87–95.
Prototy, 12:141–51. https://doi.org/10.1016/0021-9290(77)90072-0
https://doi.org/10.1080/17452759.2017.1307769 23. Goodship A, Kenwright J, 1985, The Influence of Induced
13. Bendsøe MP, 1989, Optimal Shape Design as a Material Micromovement Upon the Healing of Experimental Tibial
Distribution Problem. Struct Optim, 1:193–202. Fractures. J Bone Joint Surg Br, 67:650–5.
https://doi.org/10.1007/bf01650949 https://doi.org/10.1302/0301-620x.67b4.4030869
14. Bendsøe MP, Sigmund O, 2004, Topology Optimization by 24. Claes L, Augat P, Suger G, et al., 1997, Influence of Size and
Distribution of Isotropic Material in Topology Optimization: Stability of the Osteotomy Gap on the Success of Fracture
Theory, Methods, and Applications. Springer Berlin Healing. J Orthop Res, 15:577–84.
Heidelberg, Berlin, Heidelberg. https://doi.org/10.1002/jor.1100150414
https://doi.org/10.1007/978-3-662-05086-6_1 25. Keller TS, Mao Z, Spengler DM, 1990, Young’s Modulus,
15. British Standard, 1991, Implants for Osteosynthesis- Bending Strength, and Tissue Physical Properties of Human
Part 23: Bone Plates-Section 23.1 Method for Determination Compact Bone. J Orthop Res, 8:592–603.
of Bending Strength and Stiffness. British Standard, https://doi.org/10.1002/jor.1100080416
International Journal of Bioprinting (2021)–Volume 7, Issue 3 161

