Page 165 - IJB-7-3
P. 165

Al-Tamimi
               Med, 366:848–55.                                    United Kingdom.
               https://doi.org/10.1056/nejmhle1113918              https://doi.org/10.3403/00189873u
           3.   Green M, Wishart N, Young E, 2016, NJR 14  Annual Report.   16.  Sigmund  O,  Petersson  J,  1998,  Numerical  Instabilities  in
                                              th
               National Joint Registry, England.                   Topology  Optimization:  A  Survey on Procedures Dealing
           4.   Alsop H, 2013, An introduction to fractures’ in porter. In:   with Checkerboards, Mesh-dependencies and Local Minima.
               Tidy’s Physiotherapy. 15  ed., Ch. 22. Churchill Livingstone,   Struct Optim, 16:68–75.
                                th
               United Kingdom.                                     https://doi.org/10.1007/bf01214002
           5.   Uhthoff  HK,  Poitras  P,  Backman  DS,  2006,  Internal   17.  ASTM Standard, 2017, Standard Test Method for Flexural
               Plate  Fixation  of  Fractures:  Short  History  and  Recent   Properties  of Unreinforced  and Reinforced  Plastics  and
               Developments. J Orthop Sci, 11:118–26.              Electrical Insulating Materials by Four-point Bending, ASTM
               https://doi.org/10.1007/s00776-005-0984-7           Standard, United States, pD6272–17.
           6.   Szypryt P, Forward D, 2009, The Use and Abuse of Locking      https://doi.org/10.1520/d6272-02r08e01
               Plates. Orthop Trauma, 23:281–90.               18.  Buhl  T,  Pedersen  C,  Sigmund  O,  2000,  Stiffness  Design
               https://doi.org/10.1016/j.mporth.2009.07.002        of Geometrically  Nonlinear  Structures Using  Topology
           7.   Elias  CN,  Lima  JHC,  Valiev  R,  et al.,  2008,  Biomedical   Optimization. Struct Multidisc Optim, 19:93–104.
               Applications of Titanium and its Alloys. JOM, 60:46–9.     https://doi.org/10.1007/s001580050089
               https://doi.org/10.1007/s11837-008-0031-1       19.  Iqbal  T,  Wang  L,  Li  D,  et al.,  2019,  A  General  Multi-
           8.   McNamara  L,  2011,  Bone  as  a  Material  in  Ducheyne.  In:   objective  Topology  Optimization  Methodology  Developed
               Comprehensive Biomaterials, Elsevier, Oxford.       for Customized Design of Pelvic Prostheses. Med Eng Phys,
           9.   Prasad  K,  Bazaka  O,  Chua  M,  et  al.,  2017,  Metallic   69:8–16.
               Biomaterials:  Current  Challenges and  Opportunities.      https://doi.org/10.1016/j.medengphy.2019.06.008
               Materials, 10:884.                              20.  Saravana  KG,  George  S,  2017,  Optimization  of  Custom
               https://doi.org/10.3390/ma10080884                  Cementless Stem Using Finite Element Analysis and Elastic
           10.  Mahmoud  D,  Elbestawi  MA,  2017,  Lattice  Structures  and   Modulus Distribution for Reducing Stress-shielding Effect.
               Functionally  Graded Materials  Applications  in  Additive   Proc Inst Mech Eng H, 231:149–59.
               Manufacturing of Orthopedic Implants: A Review. J Manufact      https://doi.org/10.1177/0954411916686125
               Mater Proc, 1:13.                               21.  Chuah  HG, Rahim  IA,  Yusof MI, 2010,  Topology
               https://doi.org/10.3390/jmmp1020013                 Optimisation of Spinal Interbody Cage for Reducing Stress
           11.  Pałka  K,  Pokrowiecki  R,  2018,  Porous Titanium  Implants:   Shielding  Effect.  Comput Methods Biomech Biomed Eng,
               A Review. Adv Eng Mater, 20:1700648.                13:319–26.
               https://doi.org/10.1002/adem.201700648              https://doi.org/10.1080/10255840903208189
           12.  Al-Tamimi A, Fernandes PRA, Peach C, et al., 2017, Metallic   22.  Woo S, Simon B, Akeson W, et al., 1977, An Interdisciplinary
               Bone  Fixation  Implants:  A  Novel  Design  Approach  for   Approach to Evaluate the Effect of Internal Fixation Plate on
               Reducing  the  Stress Shielding  Phenomenon.  Virtual  Phys   Long Bone Remodeling. J Biomech, 10:87–95.
               Prototy, 12:141–51.                                 https://doi.org/10.1016/0021-9290(77)90072-0
               https://doi.org/10.1080/17452759.2017.1307769   23.  Goodship A, Kenwright J, 1985, The Influence of Induced
           13.  Bendsøe  MP,  1989,  Optimal  Shape  Design  as  a  Material   Micromovement  Upon  the  Healing  of  Experimental  Tibial
               Distribution Problem. Struct Optim, 1:193–202.      Fractures. J Bone Joint Surg Br, 67:650–5.
               https://doi.org/10.1007/bf01650949                  https://doi.org/10.1302/0301-620x.67b4.4030869
           14.  Bendsøe MP, Sigmund O, 2004, Topology Optimization by   24.  Claes L, Augat P, Suger G, et al., 1997, Influence of Size and
               Distribution of Isotropic Material in Topology Optimization:   Stability of the Osteotomy Gap on the Success of Fracture
               Theory, Methods, and  Applications.  Springer Berlin   Healing. J Orthop Res, 15:577–84.
               Heidelberg, Berlin, Heidelberg.                     https://doi.org/10.1002/jor.1100150414
               https://doi.org/10.1007/978-3-662-05086-6_1     25.  Keller TS, Mao Z, Spengler DM, 1990, Young’s Modulus,
           15.  British  Standard,  1991,  Implants  for  Osteosynthesis-  Bending Strength, and Tissue Physical Properties of Human
               Part 23: Bone Plates-Section 23.1 Method for Determination   Compact Bone. J Orthop Res, 8:592–603.
               of  Bending  Strength  and  Stiffness.  British  Standard,      https://doi.org/10.1002/jor.1100080416

                                       International Journal of Bioprinting (2021)–Volume 7, Issue 3       161
   160   161   162   163   164   165   166   167   168   169