Page 88 - IJB-7-4
P. 88

3D printing of LFIA
               https://doi.org/10.1016/j.progpolymsci.2019.101145  27.  Yetisen  AK,  Akram  MS,  Lowe  CR,  2013,  Paper-based
           21.  Pant A, Lee AY, Karyappa R, et al., 2021, 3D Food Printing   Microfluidic  Point-of-care  Diagnostic  Devices.  Lab Chip,
               of Fresh Vegetables Using Food Hydrocolloids for Dysphagic   13:2210–51.
               Patients. Food Hydrocolloids, 114:106546.           https://doi.org/10.1039/c3lc50169h
               https://doi.org/10.1016/j.foodhyd.2020.106546   28.  Stansbury JW, Idacavage  MJ, 2016, 3D Printing  with
           22.  Choong YY, Tan HW, Patel DC, et al., 2020, The Global Rise   Polymers: Challenges among Expanding Options and
               of 3D Printing  during the  COVID-19 Pandemic.  Nat Rev   Opportunities. Dent Mater, 32:54–64.
               Mater, 5:637–9.                                     https://doi.org/10.1016/j.dental.2015.09.018
               https://doi.org/10.1038/s41578-020-00234-3      29.  Infuehr R, Pucher N, Heller C, et  al.,  2007,  Functional
           23.  Harvey WT, Carabelli AM, Jackson B, et al., 2021, SARS-  Polymers by Two-photon 3D Lithography. Appl Surface Sci,
               CoV-2 Variants, Spike Mutations and Immune Escape. Nat   254:836–40.
               Rev Microbiol, 19:409–24.                           https://doi.org/10.1016/j.apsusc.2007.08.011
               https://doi.org/10.1038/s41579-021-00573-0      30.  Milovanović  A,  Milošević  M,  Mladenović  G, et al., 2019,
           24.  World  Health  Organization,  2021,  Tracking  SARS-CoV-2   Experimental Dimensional  Accuracy  Analysis of Reformer
               Variants,  World Health  Organization,  Geneva.  Available   Prototype  Model Produced by FDM and SLA 3D Printing
               from:   https://www.who.int/en/activities/tracking-SARS-  Technology. Springer International Publishing, Cham, p84–95.
               CoV-2-variants. [Last accessed on 2021 Jul 25].     https://doi.org/10.1007/978-3-319-99620-2_7
               https://doi.org/10.12659/msm.933622             31.  Gibson I, Rosen D, Stucker B, et  al., 2021, Material
           25.  Jazayeri MH,  Amani H, Pourfatollah  AA, et al., 2016,   Extrusion.  In:  Additive  Manufacturing  Technologies.
               Enhanced Detection Sensitivity of Prostate-specific Antigen   Springer International Publishing, Cham, p171–201.
               via PSA-Conjugated Gold Nanoparticles Based on Localized      https://doi.org/10.1007/978-3-030-56127-7_6
               Surface  Plasmon  Resonance:  GNP-coated Anti-PSA/LSPR   32.  Kun K, 2016, Reconstruction  and Development  of a 3D
               as  a  Novel  Approach  for  the  Identification  of  Prostate   Printer Using FDM Technology. Proc Eng, 149:203–211.
               Anomalies. Cancer Gene Ther, 23:365–9.              https://doi.org/10.1016/j.proeng.2016.06.657
               https://doi.org/10.1038/cgt.2016.42             33.  Gibson I, Rosen D, Stucker B, 2015, Vat Photopolymerization
           26.  Pollitt MJ,  Buckton G, Piper R, et al., 2015, Measuring   Processes. In:  Additive  Manufacturing  Technologies:
               Antibody Coatings  on Gold Nanoparticles  by Optical   3D Printing,  Rapid  Prototyping,  and  Direct  Digital
               Spectroscopy. RSC Adv, 5:24521–7.                   Manufacturing. Springer New York, p63-106.
               https://doi.org/10.1039/c4ra15661g                  https://doi.org/10.1007/978-1-4939-2113-3_4
































           84                          International Journal of Bioprinting (2021)–Volume 7, Issue 4
   83   84   85   86   87   88   89   90   91   92   93